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Abstract

In vitro and ex vivo �sh intestinal models for eco-
toxicological studies

Laura Mary Langan

Ecotoxicity testing of chemicals for environmental risk assessment is an area where a
high number of vertebrates are used across a variety of industrial sectors. The appli-
cation of the 3Rs in toxicity testing using �sh address both the ethical and societal
concerns around this issue in addition to the increasing legislative requests for the in-
corporation of animal alternatives. This thesis aims to highlight the potential of 3D cell
culture models to "bridge the gap" between in vitro and in vivo screening procedures
for testing of chemicals with the potential to persist or bioaccumulate thereby improv-
ing the predictive power of screening procedures. This thesis examines two alternative
methods for their potential use as an intestinal based toxicokinetic tool for environ-
mental risk assessment, utilising an in vitro �sh cell line replacement tool (RTgutGC).
In addition, for the �rst time a new intestinal primary cell culture based model was
developed to address both intestine region speci�c response (pyloric, anterior, mid and
posterior) and size related adaptability to toxins. Paramagnetic oximetry was used to
measure oxygen content within 3D structures (spheroids) in order to better understand
the microenvironment of these culture models. Using histology, immunohistochemistry,
transepithelial electrical resistance (TEER), transmission electron microscopy (TEM),
metabolic, �uorescence and gene expression assays, the comparability of this system to
native intestinal response was established. Following exposure to carefully chosen envi-
ronmental contaminants (Benzo[a]pyrene and Copper), the RTgutGC cell line demon-
strated comparable responses to existing literature in terms of uptake, metabolism,
DNA damage and the presence an equivalent saturable level. Primary enterocytes cul-
tured on transwell inserts remained viable for upto six weeks, with permeability and
metabolic activity comparable to native tissue (both in vitro and ex vivo). Taken in
combination, these features of enterocytes represent a pro�le more closely representative
of the intestine then the widely used "gut sac" method. With the potential advantages of
incorporating complexity at di�ering levels (connective tissue layer, intestinal bacteria
biome), the intestinal models described o�er the potential to screen highly persistent
toxins which may require prolonged incubation, in addition to the exploration of complex
experimental designs which minimise animal usage (uptake, depuration, uptake). As a
consequence, the models developed within this thesis signi�cantly enrich the emerging
�sh based in vitro testing strategies.
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Introduction
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1. Introduction

1.1 Toxicity testing

Toxicology, especially with respect to the environment, is an interdisciplinary area in-
corporating numerous scienti�c disciplines to deal with toxicants in the environment.
These compounds are diverse in function, action and structure and are respectively re-
ferred to as contaminants or ecotoxicants. With respect to this thesis, we will focus
on ecotoxicants which can be de�ned as substances which are discharged into the en-
vironment through human actions and have the potential to impact on the ecosystem
at relatively low levels/concentrations. Frequently, these arise as a result of industrial
activities, such as mining, but also pharmaceutical release through medical practices
and agriculture. Ecotoxicology is considered a subdivision of environmental toxicology
which studies the impact of ecotoxicants on ecosystems. Integration of toxicological in-
formation through various hierarchical levels of biological organisation and complexity
allows an explanation of the impact of toxicants on higher individuals such as humans
in addition to ecosystems. Within this, the integration process begins with information
from the simplest biological organisation at the molecular and cellular levels and grad-
ually increases complexity as detailed in Figure 1.1. Traditionally in the assessment
of toxicity in aquatic ecosystems, the most commonly utilised test was the short term
or acute lethality test which was incorporated into regulatory testing. This is due to
aquatic environments which act as repositories for natural and persistent anthropogenic
compounds (e.g. metals or pharmaceuticals)(Jayapal et al., 2010).

The development of basic toxicity test systems which are based on sound scienti�c re-
search has been ongoing for decades, and has been driven by human requirement to
identify substances and concentrations which can damage living organisms. Generally,
the biological tests which are employed to determine these damaging substances are
required to be relatively easy to perform, cost e�cient, have su�cient statistical power
to predict response, use a minimal number of experimental animals, have a stable re-
sponse with speci�c biomarkers and endpoints (e.g. test results from one laboratory
give comparable results in another with similar experimental set up) and �nally can be
easily applied in risk assessment. Development of these systems are driven by numerous
bodies, such as the Organisation for Economic Cooperation and development (OECD)
which has provided over 36 guidelines (OECD 201-236) for testing e�ects of synthetic
substances on biotic systems using numerous organisms such as bacteria, algae, dapnia,
�sh, earthworms and honeybees. In addition, the EU water framework directive (WFD
2000/60/EC) and OSPAR convention oblige all signatories to ensure the protection of
marine and estuarine environments. As an enormous investment into consumer product
safety, the REACH programme (Registration, Evaluation, Authorisation and Restric-
tion of Chemicals, established in 2006) aims to assess existing chemicals already in circu-
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lation but which have undergone little testing. This regulation (EC 1907/2006) revises
the Dangerous Substances Directive (67/548/EEC), with registration of substances still
ongoing despite an initial deadline of 2016, but now extended to 2018. This regulation
ensures that companies which introduce chemicals to both the economic market and the
environment are responsible for understanding and managing the risks associated with
their product. Due to this, it is clear that the �nal list of registered compounds will
be extensive, and thus the compulsory toxicity testing will account for more then 95 %
of the testing costs and animal use of REACH, with a considerable quantity of animals
required to ensure su�cient statistical power in the results.

At present, assessment and monitoring of toxicity in organisms is based on OECD
testing, with a predominance of lethality testing (singular end-point). These bioconcen-
tration/bioaccumulation tests are time and resource intensive and require a substantial
use of animals. A typical �ow-through �sh test will require the use of at least three
experimental groups consisting of a control and a high and low dosage, with a mini-
mum of four �sh per group sampled on at least �ve di�erent occasions during uptake
and four occasions on elimination/depuration phase (�108-300 �sh). Hence, the test-
ing capacities required under the regulations would provide substantial challenges to
existing laboratories and alternative approaches might relieve these pressures. This is
in spite of the work that has contributed to reducing the number of �sh in bioconcen-
tration/bioaccumulation studies by reducing the number of test concentrations (Burden
et al., 2014). Indeed, numerous discussions are emerging on the employment of prag-
matic approaches which aim to advance the 3Rs (reduce, re�ne and replace) approach
in regulatory ecotoxicology (e.g.|Burden et al. (2015a)), with a particular emphasis on
what is required to ensure the widespread use of non-animal approaches (Burden et al.,
2015b). More information on these methods will be discussed in later sections. Alterna-
tive approaches can include but, are not limited to, in vitro methods utilising cell culture
techniques or in silico methodology which uses mathematical modelling techniques to
predict absorption, distribution, metabolism and excretion (ADME) of synthetic or nat-
ural substances from both humans and animals based on existing information from both
in vivo and in vitro studies. Nevertheless, due to regulatory acceptance of animal tests
and an estimated 40-60,000 chemicals projected to be registered under REACH guide-
lines, tens of millions of animals will be utilised for toxicity assessment with a currently
estimated cost of 1.5 billion euros (Van der Jagt et al., 2004). Thus it is unsurprising
that the European Union is speci�cally encouraging the development and application of
alternatives to animal tests in order to allow REACH to be executed in an ethically and
�nancially e�ective manner (Castaæo et al., 2003). This is agreement with the tenets of
3Rs which was �rst de�ned by Russell and Burch (1959).

Immortalised cell lines o�er one such animal alternative. These are populations of cells
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typically originating from a multicellular organism which either spontaneously or by
mutation (through arti�cal manipulation) evade cellular senescence and can undergo
constant division, and thus can be grown for prolonged periods in vitro. In this con-
text, toxicity has been shown to initiate within an organism at the level of cell and so
this in vitro system represents a simple means to assess toxicity with minimal biolog-
ical complexity. Outside of the obvious cost saving and replacement or reduction of
animals in toxicity testing, in vitro cells lines have several advantages when compared
to whole animal tests. Toxic substances in considerable quantities may be screened
quickly using multi-well plates, and rapidly analysed. In addition, little test substance
is required, thus less toxic waste is produced. Unlike in vivo systems, de�ned experi-
mental conditions can be readily set and maintained, thus opening the possibility for
sophisticated biomechanistic studies in which the e�ects of exogenous factors can be
analysed individually or in combination. In this respect, numerous studies are currently
reviewing existing frameworks (Basketter et al., 2012), suggesting adaptations (Combes
et al., 2006) or incorporations to existing methods to improve toxicity predictions (Wilk-
Zasadna et al., 2015). A new standard in toxicity testing is emerging, which denotes a
move from the traditional apical endpoint approach as determined from animal models
to a mechanism driven approach based on the combinations of in vitro and in silico
methods such as those proposed by Wilk-Zasadna et al. (2015).

A 2013 review by European Commission on animal use for experimental and scienti�c
purposes (SWD(2013) 497 �nal) reports that rodents unsurprisingly represent the most
studied animal group within member states at 80%, followed by cold-blooded animals
namely reptiles, amphibians and �sh (12.4%). Fish are the dominant vertebrate species
for the regulatory evaluation of ecotoxicity as clearly demonstrated in OECD guidelines,
and are a�orded the same legal protection as mammals. In addition, Castaæo et al.
(2003) report that OECD guidelines on tests on �sh require higher numbers of �sh
per toxicity test than required for mammalian species. It is for this reason that the
establishment and validation of cell culture assays as alternatives to whole �sh tests, as
suggested almost 40 years ago (Rachlin and Perlmutter, 1968), is an important scienti�c
and ethical goal.
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Figure 1.1. Schematic representation of the integration of numerous responses within a biological
system in order to develop an explanation the impact of toxicants on higher level individuals
following an exposure event. With respect to the 3Rs, the assessment of the impact of toxicity
focuses predominantly on early e�ects, with 3D cellular models o�ering a means to address the
impact of toxicants on the system/organ level demonstrating good correlations with organism in
vivo models. Important to note is the increasing cost in association with complexity , in addition
to societal and regulatory pressures to avoid direct testing on components of later e�ects.

1.2 Animal alternatives

The evaluation of chemical toxicity by traditional in vivo testing protocols has proven
prohibitively costly and time consuming for screening large numbers of chemicals, yet
despite the huge advances in science, animal-free toxicology is still a long way o� (Perkel,
2007). In order to assist with this move to animal free toxicology, a large suite of animal
alternative methods have been proposed to be used independently or in combination.
Alternative methods for regulatory toxicology have been reviewed previously in sub-
stantial detail by the European Commission (Worth et al., 2014) and other bodies
(Eisenbrand et al., 2002) and cover numerous tissue and organ models and will not be
discussed in detail.

In the 21st century, a shift in standard toxicity testing began and was marked by a
move from animal testing to in vitro methods (i.e. cell culture) which resulted in
increased e�ciency and reduced animal usage as summarised by Krewski et al. (2007).
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The success and acceptance of in vitro models is arguably based on the wide breath of
cell lines or primary culture methods (ex vivo) available from various organs, or model
species. The large reliance of existing computational high-throughput models on these
in vitro systems can be �rmly placed on their long history of use. Cell culture of tissue
can be traced back to Sir William Harvey in the 16th century as detailed in Allen et al.
(2005). As a consequence, numerous studies relating to the use of cell culture in science
exist, and it is not within the remit of this study to summarise this. However, a brief
summary of its use as a toxicology tool will be discussed.

Within toxicity testing, there are many in vitro cell and tissue models available, which
encompass numerous species and organs. The use of cell lines has proven to be a
valuable, rapid and cost e�ective screening tool in the ecotoxicological assessment of
chemicals and environmental samples. Naturally, this area has been driven by human
and mammalian models, with reports of cytotoxic comparability of the in vitro models to
native tissue predominant in the literature, for example in the liver (Xu et al., 2003). The
number of cell lines currently in existence is vast (e.g. 4,000 human cell lines of various
tissue origin), with the �rst cell line deposited the American Type Culture Collection
(ATCC) in 1962. Yet, despite the growing accumulation of cell line availability with
time ( 150 species), cell lines derived from aquatic systems are minimal in comparison.
A review by Lakra et al. (2011) estimates that more than 283 cell lines derived from
�n�sh are available (freshwater and marine) with culture conditions and media usage
well established in the literature (Lakra et al., 2011; Bols and Lee, 1991).

Until recently, the majority of studies in cell biology reported on the use of cells of
interest cultured on cell culture-compatible polystyrene in a two dimensional monolayer.
However, cells are typically surrounded by either an extracellular matrix (ECM) or are
in direct physical contact with cells from either the same or di�erent lineages, and so
this technique is generally not considered the natural microenvironment of the cells. In
alternative culture methods, there has been a substantial increase in the application of
three dimensional culturing methodologies, such as cell cultures as aggregates refereed
to in this thesis as spheroids (Uchea et al., 2015; Baron et al., 2012) (Figure 1.2a),
cells grown on 3D sca�old material (Chen et al., 2015; Stott et al., 2015; Vllasaliu
et al., 2014; Kumar et al., 2010; Leonard et al., 2010) (Figure 1.2b), or are embedded
in gels (McCracken et al., 2011; Justice et al., 2009; Macartney et al., 2000). A review
by McKim (2010) outlines in detail the development of an in vitro toxicity screening
strategy that is based on a tiered approach to data collection combined with data
interpretation as suggested in the previous section.
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(a) Spheroid/cellular aggregate (b) Transwell insert

Figure 1.2. Schematic representation of the two most widely utilised three-dimensional culture
methodologies. Cellular aggregates or spheroids (a) as they will be referred to throughout this
thesis are typically spherical in nature composed of numerous individual cells that aggregate
together through rotatory assistance. The �nal size of the spheroid is typically dependent
on individual cell size and seeding density. The transwell insert system (b) is demonstrated
consisting of a transwell insert with a base membrane separating the well into upper (apical)
and lower (basal) compartments. Cells are typically grown in the apical compartmental to
create junctional complexes and then uptake is addressed through exposure via the apical/basal
compartment typically using media as a carrier although saline has also been reported for gills
(Stott et al., 2015).

A prudent approach to the selection of a three dimensional model is to understand
both the strength and weakness of each system. For example, spheroids which are
individual cell aggregates are arguably considered the simplest 3D construct in tissue
culture with the best physiological representation of the native tissue in comparison to
other commonly utilised models such as cells grown as monolayers, tissue slice or ex
vivo organs (for example: everted gut sac). Unsurprisingly, the latter two examples are
in short supply due to the need for technical training and use of animals (for review
see Fennema et al. (2013); Mehta et al. (2012); Vinci et al. (2012) and Hirschhaeuser
et al. (2010)). As a consequence, there has been a massive increase in usage of spheroids
over the last three decades covering a range of models including human (Ho et al., 2012;
Leite et al., 2012; Djordjevic and Lange, 2006), murine (Xu et al., 2012; Laib et al.,
2009; Ma et al., 2003), �sh (Langan et al., 2016; Uchea et al., 2015; Baron et al.,
2012; Flouriot et al., 1995, 1993) and snails (Cueto et al., 2013). Unsurprisingly, the
availability of literature and research in this area has also resulted in the application
of this culture method to quantify drug uptake and di�usion (Achilli et al., 2014; Vinci
et al., 2012) and as a tool for toxicity testing in a variety of model systems (Uchea et al.,
2015; Baron, 2014; Fey and Wrzesinski, 2012; Leite et al., 2012). Despite the abundant
literature which encourages the adoption of the spheroid culture method across di�erent
species, the model has some limitations. Kunz-Schughart et al. (2004) reports that
spheroids may represent a powerful tool for initiation toxicity assays for drug selectivity
and speci�city as long as necrosis is not present when normal (non-tumour) cells are
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