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On the relation between robustness, evolvability 

and phenotypic complexity: Insight from Artificial 

Evolutionary Experiments by Nicola Milano 

 

Abstract 

 

This thesis addresses the study of evolutionary methods to achieve robustness and evolvability in 

artificial systems. Chapter 1 introduces the research area, reviews the state of the art, discusses 

promising research directions, and presents the two major scientific objectives of the thesis. The 

first objective, which is covered in Chapter 2, is to verify and exploit the impact of the environmental 

variations on the evolvability of an artificial system. This is accomplished through the use of two 

experimental setup: the simulation of digital circuits and the simulation of a robotic agent situated 

in an external environment. Digital circuits are used to considers the variation as internal to the 

system, modelled as fault in circuit gates; agent-based simulation instead consider the variation in 

the external environment where the robot performs. The second objective, which is targeted in 

Chapter 3, presents the design of a new algorithm and a more efficient selection mechanism that 

exploits the characteristics of robustness and neutrality of the digital circuit domain. Due to its 

relative simplicity quantitative measures of phenotypic complexity, robustness and evolvability are 

obtained. Such information on the search space composition is then used to design a novel 

evolutionary algorithm that outperforms previously methods and to propose a selection mechanism 

that takes into account the phenotypic complexity of the genotypes. Chapter 4 summarizes the 

results obtained and describes the major contributions of the thesis. 
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Chapter 2. On the relation between robustness and 

evolvability 
 

At a first sight, robustness and evolvability have an antagonistic relationship. From a genetic point 

of view, the higher the robustness of a system, the lower is the probability that it will vary as a result 

of genetic mutations, and consequently the lower the evolvability of the system is. Indeed, 

mechanisms that prevent changes such as proofreading and DNA repair enhance robustness but 

reduce phenotypic variability (Lenski, Barrick and Ofria, 2006; Masel and Trotter, 2010). On the 

other hand, robustness to mutations facilitates the retention of mutations that permits the 

population to spread over large regions of the genotype space, the space of all possible genotype 

expressible by a system (Wagner, 2008). This combined with the fact that the phenotypes located 

on distant regions of the genetic space are much more varied than the phenotypes located in nearby 

regions of the genetic space, increases the differentiation of the phenotypes that can be produced, 

at the level of the population, through genetic variations (Wagner, 2008).   

A second reason that suggests an antagonistic relationship between robustness and evolvability is 

that environmental factors can favor the expression of some hidden traits that remain unexpressed 

in static environments, so individuals can improve their functionalities and innovate under the drive 

of environmental variations. Prolonged exposure to static environments can cause the expression 

of genes that are suitable only in that particular environment and the consequent loss of other traits, 

developing robust individuals in that particular environment but not evolvable or adaptable (West-

Eberhard, 2003, de Visser et al., 2003).   

The influence of genetic robustness on evolvability also depends on whether robustness is achieved 

through the development of parsimonious (phenotypically simple) solutions that minimize the 

number of genes having a functional role (de Visser et. al. 2003) or through mechanisms capable of 

buffering the effect of mutations. Buffer means to be able to cope with mutations not being affect 

by them also if that occurs. Mechanisms able to buffer the effect of mutations are redundancy: the 

presence of multiple components playing the same function (i.e. different genes having the same 

functions); and degeneracy: i.e. the interaction between multiple components playing multiple 

functions  (Tononi, Sporns, and Edelman, 1999; Edelman and Gally, 2001). The achievement of 

robustness through these mechanisms requires less parsimonious (phenotypically more complex) 

solutions; the complexity of these solutions plays a fundamental role for the evolvability, because 
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trajectories in populations (Wierstra et al., 2009).   

The relation between environmental variation and evolvability can also be exemplified by using the 

genetic network framework. Consider agents situated in an environment that varies periodically 

between environment 1 and environment 2  denote respectively, the environment 1 genotypes with 

full circles and environment 2 with empty circles(Figure 2.3, top and middle panel). Finally, let 

assume that the genotypes filled in gray are viable in both type of environments (Figure 2.3, bottom 

panel).  

 

 

Figure 2.3. Each rectangle represents the same part of a hypothetical genotype space. The filled black circles in the 
upper panel and the open black circles of the middle panel correspond to parts of two genotype networks that are 
viable in environments 1 and 2, respectively. The gray circles in the lower panel correspond to the intersection of these 
genotype networks, and thus to genotypes viable in both environments. Gray arrows highlight a genotype in this 
intersection. This genotype, together with its neighbors on the same genotype network, is also shown to the right of 
each panel. Adapted from Wagner 2008 
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Individuals robust to environmental variations are those that develop viable phenotypes in multiple 

environments and are able to perform optimally in different conditions.  Figure 2.3 is a simply 

approximation in only two environments but the consideration can be easily extended to a number 

n of environments. In this case the intersection between viable n-environment phenotypes became 

progressively smaller, however keeping in mind that the genotype space are extremely large the 

amount of n-viable phenotype is still very large (Wagner, 2009; Wagner,  2008).  

In the context of evolutionary computation, the study of adaptation in varying environmental 

conditions is usually indidicated with the term dynamic optimization (Branke, 2002). Jin and Branke 

(2005) pointed out how these studies address different type of variations. In some cases, the 

evolutionary process should deal with variations caused by the fact that the calculation of the fitness 

is noisy. In other cases, the fitness measure constitutes only an approximation of the fitness value. 

In a third set of cases, the fitness function and consequently the problem to be solved vary over 

generations. Finally, in the fourth set of cases, the characteristics of the environment and/or of the 

agent vary across generations.  

Previous research demonstrated how exposing evolving candidate solutions to varied 

environmental condition during multiple evaluation episodes can successfully lead to robust 

solutions in different domains: electronic circuits robust to temperature variations (Thompson and 

Layzell, 2002), fault tolerant neural networks (Sebald and Fogel, 1992), job shop scheduling 

(Tjornfelt, Jensen and Hansen, 1999), flight control under changing conditions (Blythe, 1998), robot 

control in varying environmental conditions (Nolfi et al., 1994; Jacoby, 1997). Individuals able to 

operate effectively in multiple environments can also adapt more easily to new environments, never 

experienced before. This since they display a greater number of traits. Consequently, they have a 

greater probability to posses traits that can be re-used in the new environmental conditions (Samal  

et al., 2010, Wagner, 2008, Crombach and Hogeweg, 2008). 

 

Several studies analyzed the impact of environmental variations on evolutionof artificial systems. 

Draghi and Wagner (2009) observed that gene regulatory networks evolved in varying 

environmental conditions, i.e. realized by varying the fitness function, are more likely to adapt to 

new environmental variations. Similar results were found by Crombach and Hogeweg (2008) on 

another study involving gene regulatory networks. They found that networks evolved in two 

environmental conditions that alternated periodically over generations outperformed individuals 

evolved in stable environmental conditions.  
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Kashtan et al. (2007) showed that the exposure to varying environmental conditions, realized by 

varying the fitness function,  speeds-up evolution expecially when the new fitness function varies 

within limits while preserving most of its objectives.  

Moreover, the problem of adapting to varying environmental conditions change depending  on 

whether the individuals have access to states that provide information about the current conditions 

or not. In the latter case, the adaptive individuals can only try to select strategies that degradate as 

little as possible in varied environmental conditions. In the former case, the adaptive individuals can 

also develop an ability to adjust their strategy to the current condition.  

Individuals able to operate effectively in multiple environments can also adapt more easily to new 

environments, never experienced before. This, since they display a greater number of traits. 

Consequently, they have a greater probability to posses traits that can be re-used in the new 

environmental conditions (Samal et al., 2010, Wagner, 2008, Crombach and Hogeweg, 2008). 

 

1.4 Phenotypic complexity and evolvability 

Another factor that can influence evolvability is the complexity of the evolving phenotype. The 

indirect relationship between the genotype of evolving agents and the behavior exhibited by the 

agents implies that the same behavior can be generated by genotype of different complexity(Branke 

and Jin 2003, Raman and Wagner 2011). From the point of view of the fitness gained by the agent 

the possession of larger or smaller phenotype might make no difference, provided that the behavior 

produced by the agent is the same. From the point of view of the propensity of the agent to generate 

better offspring, instead, the possession of a larger phenotype might be advantageous with respect 

to the possession of a smaller phenotype.  

An evidence of the correlation between the complexity of the phenotype and evolvability has been 

reported in the study of Raman and Wagner (2010) who analyzed the property of logic circuits 

composed by nodes performing logic functions. By systematically analyzing randomly sampled 

circuits of different size, the authors observed a correlaction between the size of the circuit and its 

evolvability defined as the number of functionally different circuits that can be generated by 

exploring the neutral network of the original circuit.  

Wagner (2010) also pointed out a possible relation between variability of the environmental 

conditions, complexity of the agents, and evolvability. More specifically the author pointed out how 

the need to operate in variable environmental conditions can promote the development of more 



 

 

27 

complex phenotype capable of displaying multiple behaviors that are adapted to the specific 

environmental conditions they might encounter. This, in turn, promotes the development of more 

complex phenotypes that can benefit from an enhanced evolvability.  

An example of how complexity is fundamental for biological system comes from bacteria and their 

metabolic reactions. Bacteria that live in fixed environment develop simple metabolic networks that 

rely on only a few different type of metabolic reactions. Instead, bacteria robust to changing 

environments develop more complex metabolic networks, and the chemical reactions they perform 

are robust to failures in one or more part of the reactions network (Wagner 2010). Complex 

metabolic networks are also more evolvable, i.e. have a greater probability to discover how to  

metabolize new nutrients as a result of genetic variations.  

After the theoretical introduction of robustness evolvability and complexity, in the next chapter I 

will introduce in a formal way the evolutionary algorithms and the technique used in this thesis to 

reproduce and study how these biological properties can be reproduced and analyzed in artificial 

systems. 
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Digital circuits can be realized in hardware or simulated in a computer. In standard electronic digital 

circuit the number and type of gates and the way in which they are wired is hardwired and hand-

designed. In reconfigurable electronic digital circuits (such as the FPGA, see (Balch M. 2003)), 

instead, the logic function computed by each gates and the way in which gates are wired can be 

varied. In evolvable hardware applications and in simulated evolving circuits the logic functions 

computed by each gates and the way in which gates are wired are encoded in artificial genotypes 

and evolved (Koza J. 1992,  Thompson A. et al. 1999, Miller J.F et al. 2000,Miller J.F. et al. 2006). 

Evolving circuits are selected based on their fitness which is usually computed by measuring how 

well the function computed by a circuit approximates a given target function. 

As in several related works (Thompson et al 1999, Raman and Wagner 2011, Hartmann and Haddow 

2004), I choose to provide digital circuits with a fixed number of gates since this enables us to use a 

simple encoding schema. For alternative approaches in which the number of gates is variable, see 

(Macia and Sole 2009, Miller and Hartmann 2001). However, notice that the usage of a fixed number 

of logic gates only limits the maximum size of the circuits. Indeed, as I will see, evolving circuits 

typically use a much smaller number of gates than the maximum number(Gadja and Sekanina 2010, 

Raman and Wagner 2011), i.e. they include several non-functional gates that do not contribute to 

the function computed by the circuit itself. In other words, the size of the evolving circuits varies in 

any case within the limit imposed by the maximum number of gates (Miller and Smith 2006 ). In 

other words, the functional size of the evolving circuits can vary freely, within the upper limit 

imposed by the maximum number of gates. This also implies that the number of genes encoding 

phenotypical components (gates) playing a functional role can also vary freely during evolution. 

I decided to use digital circuits since they have been widely used in artificial evolutionary studies 

(Koza 1992, Thompson et al. 1999, Miller et al. 2000) and since they share with natural systems (e.g. 

proteins, RNA, regulatory circuits and metabolic networks) the following properties (Wagner 2011, 

Raman and Wagner 2011): (i) any phenotype (i.e. any circuit computing a given logic function) can 

originate from many different genotypes, (ii) these genotypes, giving rise to the same phenotype, 

can vary significantly among themselves, (iii) these genotypes span over vast genotype networks or 

neutral networks (Schuster et al 1994, Wagner 2008), i.e. genotypes giving rise to the same 

phenotype connected through single locus variation links, (iv) genotypes typically have many 

neighbors with the same phenotype and are thus robust to some extent to mutations, (v) the 

neighborhood of genotypes belonging to the same neutral network includes genotypes that give 

rise to rather different phenotypes. 
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This chapter was devoted to a brief introduction of evolutionary algorithms and a more extensive 

presentation of the Cartesian genetic programming, method that constitutes the core of the 

experimental part of this thesis. The next two chapters are dedicated to the experiments performed 

using CGP, evolutionary algorithm and artificial evolution methods: to study, exploit and analyze 

robustness evolvability and complexity in artificial systems 
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Krischner and Gerhart 2005, Wagner 2008, Sniegowsky and Murphy 2006). I adopted the definitions 

reported above since they enable us to distinguish between variations and adaptive variations and 

since they can be clearly operationalized in the case of my experiments. Indeed, they can be 

measured by generating from an evolving circuit a large number of genetically varied circuits and 

by counting the fraction of different unique phenotypes and the fraction of fitter phenotypes (for 

more details see below).  

The relation between robustness to genetic variations, robustness to fault tolerance, and 

phenotypic variability in evolving digital circuits has already been investigated in several studies. By 

exploring the space of 1045 logic circuits (genotypes) and of 1019 corresponding logic functions 

(phenotypes), (Raman and Wagner 2011) observed that: (i) the robustness of circuits with respect 

to mutation and to faults is high on the average, (ii) different circuits with the same phenotype have 

a broad distribution of robustness to genetic variations, with some circuits being much more robust 

than others, and (iii) larger circuits are more robust to mutations than smaller circuits. Larger circuits 

are more robust than smaller circuits also with respect to mutations that affect the components of 

the circuit that actively contribute to the output of the overall circuit. Moreover, the authors 

observed how neutral evolution tends to select circuits that have a high robustness with respect to 

mutation but a low phenotypic variability (Raman and Wagner 2011). The neutral evolutionary 

process was realized by choosing a circuit computing a given function, generating an initial 

population composed of identical copies of the same circuit, generating varied copies of the circuits, 

and selecting the variations that preserve the function computed by the original chosen circuit. 

Hu et al 2011 and Hu et al 2012, instead, analyzed in an exhaustive manner the space of 228 logic 

circuits (genotypes) and of 16 corresponding logic functions (phenotypes). The circuits were 

constituted by 2 inputs, 4 gates and 1 output. Their analysis revealed that: (i) the genotype space is 

divided into only 16 fully connected neutral networks corresponding to 16 phenotype networks, (ii) 

the size of the networks varies significantly, and (iii) the genotypes located in the innermost core of 

the networks are characterized by a high level of robustness to genetic variation and by a low level 

of phenotypic variability. Moreover, by analyzing the course of random walk exploration processes 

carried out from a randomly selected genotype belonging to a given network toward the first 

encountered genotype belonging to a different network, the authors observed that: (i) different 

networks have rather different accessibility levels (i.e. probability to be reached through neutral 

and/or adaptive variations), (ii) the time necessary to reach a network through neutral and/or 

adaptive variations is correlated with the accessibility of the network (iii) the accessibility of a 

network is correlated with the robustness to genetic variations of the genotypes forming the 
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as the logic function computed by a given circuit, as in (Raman and Wagner 2011). This must be 

pointed out, because in many works related to genetic programming the  phenotype represent the 

phisycal form of the circuit (Koza 1992, Miller and Thompson 1999). Anyway, in this thesis I will 

follow the terminology adopted in (Wagner 2008, Wagner 2010, Raman and Wagner 2011) where 

the function that any one circuit computes is an analogue to a biological phenotype.  

The results demonstrate that the need to cope with faults promotes the selection of phenotypically 

variable and evolvable circuits, and this, in turn, speeds up the evolution of effective circuits. 

4.2.2 Method 

Digital circuits (Figure 4.1) are systems that compute logic functions, such as the multiplication of 

digital numbers, by receiving as input two or more binary (Boolean) values and by producing as 

output one or more binary values, as described in chapte 3. In the experiments reported in this 

section I evolved simulated digital circuits with four inputs, 256 logic gates divided into 16 layers of 

16 gates, and one output for the ability to compute a 4-bit even parity function (i.e. to produce as 

output 1 when there is an even numbers of 1 in the input pattern and 0 otherwise), this 

configuration cames from (Raman and Wagner), figure 4.1 give an exemplification of the circuit. 

 

 

Figure 4.1. Top. A digital circuit with two inputs, two outputs, and four gates. The right side of the panel shows the four 
symbols that correspond to the four kinds of permissible logic gates. The numbers 1-2 indicate the binary states that 
are provided as inputs to the circuit (input pattern). The numbers 3-6 indicate the output computed by the four 
corresponding logic gates. The output of the circuit corresponds to the output of the two logic gates that are wired to 
the output pattern (4 and 5). The lines indicate the wiring of the circuit. Circuits can be composed by different numbers 
of rows and columns, each gates can receive inputs only by gates of the previous columns. Bottom. The genotype of the 
circuit is shown. The first 4 vectors of 3 numbers encode the characteristics of the four gates (from top to bottom and 
from left to right). The blue numbers encode the input states of each gate. The black numbers encode the function 
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among the individuals of the population and reduces the risk of premature convergence. When 

stochasticity is zero many genotypes will have the same fitness as the offspring of parents may only 

differ in non-coding region, to this reason I skipped the evalution of same functional offspring 

ensuring that all the experiment had the same number of evalutation 

 

 MutRate 0.01  MutRate 0.02 MutRate 0.03 MutRate 0.04 MutRate 0.05 

Stochasticity 0.0 26.66% 33.33% 33.33% 36.66% 36.66% 

Stochasticity 

0.05 

33.33% 50% 46.67% 40% 36.66% 

Stochasticity 

0.08 

26.66% 26.66% 33.33% 36.66% 30% 

Stochasticity 0.1 20% 30% 30% 30% 26.66% 

 

Table 4.1. Percentage of evolutionary experiments that achieve maximum fitness in the no-fault condition in 20 
experiments carried out with different mutation rate and stochasticity range. Each experiment has been replicated 30 
times and continued for 6000 generations.  
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the following Tables/Figures of this section I refer to the 30 replications of the evolutionary experiment carried out in 
the no-fault condition with Stochasticity=0.05 and MutRate=0.02.  

The factor that drives evolution toward the selection of small circuits (i.e. circuits with a small 

functional part) is the fact that smaller is a circuit with respect to the other individuals of the 

population, the larger the probability that its offspring will receive mutations that do not affect its 

functional gates, and consequently, the higher is the probability that its offspring will have a relative 

higher fitness. This is similar to the protection hypothesis that postulates that non-functional coding 

regions of the genotype might protect the evolving individuals from the deleterious effect of 

crossover (Miller and Thomson, 2000).  

This is demonstrated by the fact that the number of logic gates that actively contribute to the output 

of the circuit is only 30.4 and 18.3, on the average, in the case of circuits evolved for 6,000 

generations displaying optimal or sub-optimal performance, respectively. Moreover, it is 

demonstrated by the fact that in most of the cases the size of the functional part of evolved circuits 

decreases with increasing generations, when they are subjected to a neutral evolutionary process 

in normal conditions (Fig 4.3, top, Wilcoxon Rank Sum Test, p < 0.001) while the size increases in a 

control condition in which selected offspring are used to replace only their own parent (Figure 4.3, 

bottom, Wilcoxon Rank Sum Test, p < 0.01). Notice that the latter condition corresponds to a 

situation in which the population is divided into 20 different single-individual sub-populations that 

evolve independently without competing with each other during selection. The tendency to select 

functionally small solutions, therefore, originates because of the selection process (only the best 

individuals reproduce) and as the result of the fact that smaller circuits have a greater probability 

to generate viable offspring than larger circuits. 
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with low phenotypic variability and low evolvability (see also the results of the comparison with 

circuits evolved in the fault condition described below).  

Raman and Wagner 2011 have already found a correlation between circuit size and phenotypic 

variability. In their case, the correlation was observed by comparing randomly generated circuits of 

different size that computed the same logic function. The correlation, therefore, seems to 

characterize all circuits, irrespectively from whether they were evolved or not and irrespectively 

from the function that they compute.  

The fact that the growth of non-coding regions of the genotype can protect evolving individuals 

from deleterious genetic variations has already been pointed out in previous works (Miller and 

Thomson  2000). Here I show that this protection can be achieved by shrinking the coding regions 

at the cost of a reduced phenotypic variability and evolvability.   

The tendency of the population to move toward functionally small circuits during neutral 

evolutionary phases is a consequence of: (i) the fact that under neutral evolution the population 

tends to concentrate toward highly connected parts of the neutral network that correspond to 

individuals that are relatively robust against mutations (Nimwegen et al. 1999, Newman  2010, 

Wilke 2001), and (ii) the fact that individuals that are robust against mutations generally correspond 

to functionally small circuits  
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4.2.3.2 The need to face faults promote evolvability 

In this section, I report the results obtained by evolving circuits in the fault condition, i.e. in a 

condition in which each circuit gates, is subjected to fault during operation with a certain 

probability. 

To identify the optimal value of the two additional parameters that characterizes the evolutionary 

process in the fault condition I systematically varied the fraction of worst trials considered in the 

fitness function and the rate of variation of the fault frequency across generations. As shown in 

Table 4.3, the values of the parameters that maximize the percentage of replications leading to 

optimal performance in 6,000 generations are WTrials=25% and vFaultRate=5 (see Table 4.3). For 

the mutation rate I kept the same value that resulted optimal in the no-fault condition (MutRate  = 

0.02). The stochasticity range was set to 0.0 given that in the fault condition the fitness measure is 

already subjected to the stochastic effects caused by the randomly occurring faults, i.e. by the fact 

that the fitness loss caused by faults depends on the specific gates that are affected by faults. 

Indeed, using two different form of stochasticity result in very noisy behavior, so, in this case the 

usage of a stochasticity range greater than 0.0 is counterproductive (see Table 4.4) and not 

beneficial as in the case of the no-fault condition (Table 4.1). 
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 vFaultRate=1 vFaultRate=3  vFaultRate=5 vFaultRate=7 vFaultRate=9  

WTrials=35% 46.66 43.33 50 53.33 43.33 

WTrials=30% 50 50 60 53.33 40 

WTrials=25% 53.33 53.33 60 46.66 40 

WTrials=20% 50 46.66 53.33 40 36.66 

WTrials=15% 46.66 46.66 50 43.33 36.66 

WTrials=10% 33.33 30 33.33 30 26.66 

 

Table 4.3. Percentage of evolutionary experiments that achieved maximum fitness with different values of the 
vFaultRate and wTrial parameters. The MutRate and Stochasticity parameter are set to 0.02 and 0.0, respectively. Data 
obtained by running 30 replications, each lasting 6,000 generations, for each combination of parameters. The 
percentage of success refers to the performance achieved during the trial in which the circuits are not subjected to 

operational faults. 

 

Stochasticity=0.0 Stochasticity=0.01 Stochasticity=0.02 Stochasticity=0.03 Stochasticity=0.04 Stochasticity=0.05 

60 36.66 30 33.33 23.33 20 

 

Table 4.4. Percentage of evolutionary experiments that achieve maximum fitness in experiments carried out with 
different values of the Stochasticity parameter. Data obtained by running 30 replications lasting 6,000 generations for 
each value of the parameter. The Wtrial, vFaultRate, and MutRate parameters have been set 25%, 5, and 0.02, 
respectively. The percentage of success refers to the performance achieved during the trials in which the circuits are 
not subjected to operational faults. 

The comparison of the results indicates that, as expected, the circuits evolved in the fault condition 

are more robust with respect to genetic variations affecting their functional components than the 

circuits evolved in the no-fault condition (Table 4.5). Indeed, the percentage of variations affecting 

functional gates that do not produce any loss in performance is 2.07% and 0.99% on the average, in 

the case of fault and no-fault circuits, respectively. The circuits evolved in the no-fault conditions 

are more robust with respect to overall variations than the circuits evolved in the fault condition. 

As discussed above, however, this does not reflect a genuine robustness but simply the fact that 

circuits evolved in the no-fault conditions are smaller than the circuits evolved in the fault condition. 
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The circuits evolved in the fault condition are larger than those evolved in the no-fault condition 

from generation 6,000 on (see Fig 4.6, left).   

The circuits evolved in the fault condition have a greater phenotypic variability (Table 4.5).  

Finally, the circuits evolved in the fault condition have a greater evolvability. This is demonstrated 

both by the fact that the percentage of genetic variations leading to improvements is higher in the 

case of the circuits evolved in the fault condition (Table 4.5) and by the fact that the circuits evolved 

in the fault condition achieve better performance from generation 6,000 on with respect to circuits 

evolved in the no-fault condition (Fig 4.6, right). As expected, the probability that random genetic 

variations lead to improvement (evolvability) is rather low in both cases (Table 4.5). However, it is 

higher for circuit evolved in the fault than in the no-fault condition. Notice that the evolvability is 

necessarily 0 for circuits displaying optimal performance, because I have defined it as the propensity 

to generate better solution,so, by definition a circuit displaying optimal performanc cannot improve. 

Since the number of optimal circuits evolved in the fault condition is greater than the number of 

optimal circuits evolved in the no-fault condition, the difference in evolvability between the two 

conditions is even greater than that reported in Table 4.4. This strengthens my conclusion that 

circuits evolved in the fault condition have a greater evolvability than circuits evolved in the no-fault 

condition. 

 

 

 

Figure 4.6. Left: Average size of functional circuits throughout generations in the no-fault and fault conditions. Right: 
Fraction of replications achieving optimal performance throughout generations in the no-fault and fault conditions. 






































































































































