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Application of Fractional Calculus to Rainfall-Strcamflow Modelling 

Martin Francis Borthwick 

Abstract 

There is evidence that hydrologic systems exhibit memory processes that may be 
represented by fractional order systems. A new theory is developed in this work that 
generalises the classical unit hydrograph technique for the rainfall-runoff 
transformation. The theory is based upon a fractional order linear deterministic systems 
approach subject to an initial condition and is taken to apply to the entire rainfall-
streamflow transformation (i.e. including baseflow). The general equation for a cascade 
of time-lagged linear reservoirs of fractional order subject to a constant initialisation 
function is derived, and is shown to be a form of fractional relaxation model. Dooge's 
(1959) general theory of the instantaneous unit hydrograph is shown to fit within the 
new theoretical framework. Similarly the relationship to the general storage equation of 
Chow and Kulandaiswamy (1971) is demonstrated. It is shown that the correct 
initialisation of cascade models requires a substantial number of initial conditions which 
may limit the viability of applying them in practice. Consequently, the differential 
formulation of the classical Nash cascade has been corrected and reinterpreted. 

The unbounded nature of the solution to the convolution integral form of the single 
fractional relaxation model is overcome by application of the Laplace transform of the 
pulse rainfall hyetograph following Wang and Wu (1983). The model parameters are 
fitted using the genetic algorithm. 

The fractional order cascade equations are tested for classical rainfall-runoff modelling 
using a set of 22 events for the River Nenagh. The cascade of 2 unequal fractional-
order reservoirs is shown to converge to that of the integer order case, whilst the 
cascade of equal reservoirs shows some differences. 

For the modelling of the total rainfall-streamflow process the single fractional order 
reservoir model with a constant initialisation function is tested on a selection of events 
for a range of UK catchment scales (22km^ to 510km ). A rainfall loss model is 
incorporated to account for infiltration and evapotranspiration. The results show that 
the new approach is viable for modelling the rainfall-streamflow transformation at the 
lumped catchment scale, although the parameter values are not constant for a given 
catchment. Further work is recommended on determining the nature of the initialisation 
function using field studies to improve the identification of the model parameters on an 
event-by-event basis. 
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Chapter 1 Introduction 



1.1 Context 

The review of the literature presented herein indicates that a fi^ctional calculus 

approach has not been used to model the rainfall-streamflow process at the storm event 

timescale. However, there is evidence from applications in the related areas of longer 

period time-series analysis, pollution-transport hydrology and systems analysis that the 

approach has potential for use in modelling the rainfall-streamflow transformation. 

1.2 Aim and Objectives 

The aim of the programme of study was to apply the fractional calculus to deterministic 

rainfall-streamflow modelling at the storm event timescale. The objectives of the work 

were: 

• to develop a theory for the conceptual modelling of the rainfall-streamflow 

transformation using a fractional order systems approach; 

• to fit the parameters to the derived models using observed rainfall-streamflow event 

data for a range of catchment scales; 

• to assess the validity of the model forms and investigate the sources of uncertainty; 

and 

• to identify potential areas for future development, 

1.3 Contribution to knowledge 

A programme of research was undertaken which involved the novel application of the 

fi^ctional calculus technique to deterministic rainfall-streamflow modelling at the storm 

event timescale. A new theoretical framework was developed, tested and evaluated. 



1.4 Thesis Structure 

Chapter 2 presents a review of the research literature on the computational approaches 

to deterministic rainfall-streamflow modelling and identifies the limitations of existing 

methods and some of the key challenges for ftjture research. This provides a context for 

the programme of work. The key features of the fractional calculus and the recent 

applications to science and engineering that are relevant to the problem of rainfall-

streamflow modelling are reviewed in Chapter 3. The theory of fi^ctional order 

hydrologic systems is developed in Chapter 4 and the new model equations are derived. 

The computational model testing methodology together with details of the catchments 

studied is presented in Chapter 5. Chapter 6 contains the model test results for a range 

of catchment scales and events. The validity of the theoretical models is discussed in 

the light of the test results in Chapter 7, and the conclusions and recommendations are 

summarised in Chapter 8. 



Chapter 2 Review of Deterministic Computational 
Rainfall-Streamflow Modelling 



2.1 Computational Rainfall-Streamflow Modelling 

Computational modelling of the transformation of rainfall to streamflow is important for 

a number of civil engineering applications, for example flood and drought forecasting, 

flood defence design, and predicting the effects of climate and land use change on the 

hydrological response of catchments. The mathematical modelling of this 

transformation is not precise, however, because of the complex behaviour of the 

hydrologic processes, the heterogeneity of the flow pathways, and uncertainties in the 

measured data used. This is evident in the numerous models that have been developed 

(Beven 2000; Singh and Woolhiser 2002). The selection of the model by the user 

depends on the application, the physical and temporal scales of the catchment processes 

to be represented and the availability of data (in particular whether the catchment is 

gauged). These factors influence the "perceptual model" of the user (Beven 2000). The 

approximate formulation of the user's perceptual model as a mathematical model may 

be carried out in a number of different ways, and may be classified (Wheater 2002) as 

metric, conceptual, hybrid-metric-conceptual or physics-based. The model may also be 

categorised in terms of whether it represents the variation in physical processes across 

the area of the catchment explicitly (a distributed model) or uses spatially averaged 

processes (a lumped model). Furthermore it is possible to distinguish between 

stochastic and deterministic models where stochastic indicates that some of the model 

variables can take random values according to pre-defined probability distributions. 

2.2 Metric Models for Runoff 

2.2.1 Linear models 

Metric (black box) models use a systems-based approach to transform inputs to outputs 

through fitting parameter values to a predefined mathematical transfer function using 

observations. They do not describe processes. The most commonly used in rainfall-



runoff modelling is the unit hydrograph (UH) technique developed from the work of 

Sherman (1932). It assumes that the system is a causal, linear, time-invariant process 

that represents the conservation of the volume of rainfall that becomes outflow (Dooge 

1973). Causality refers to systems where the output only depends on inputs up to the 

present time, which is true for streamflow. The linearity assumption permits the use of 

the principles of superposition and proportionality in the solution of the system 

equations, hi addition, the time-invariance assumption implies that the catchment 

characteristics are unchanged over the duration of the streamflow event so that the 

coefficients in the system equations are constants. These latter two assumptions are 

approximations for streamflow systems (Minshall 1960). 

Typically, in the development of the perceptual UH model for effluent streams, the total 

streamflow hydrograph associated with a given rain storm event is assumed to be made 

up of stormflow (sometimes referred to as runoff) from the event rainfall plus base/low 

draining from water stored in the catchment following infiltration from previous rainfall 

events, hi order to satisfy volume conservation over storm event timescales, the 

effective rainfall that is net of "losses" due to infiltration, evapotranspiration, and 

surface ponding, needs to be derived from the observed rainfall. Similarly the 

stormflow needs to be derived from the observed streamflow hydrograph. 

Consequently, the assumed closed system of effective event rainfall transformed into 

stormflow may be approximated by the unit hydrograph analysis. This can be 

expressed mathematically as the stormflow (runoff), /</), at a time / due to an impulsive, 

effective rainfall input, /(r), at an earlier time r which is obtained through the 

convolution integral for a linear system on a continuous time scale (equation (2.1)): 

-(/)= f / ( r > ( / - r > / r (2.1) 
Jo 



where h(t) is the impulse response function or instantaneous unit hydrograph (lUH). 

The lUH is a theoretical construct that represents the runoff response to a given volume 

of effective rainfall falling instantaneously rather than in a finite duration. 

The effect of the rainfall losses and the baseflow on the relationship of the observed 

(total) rainfall to the observed (total) streamflow is sufficiently non-linear to warrant 

modelling separately to the process of short term stream response (i.e. effective rainfall 

to stormflow) to a rainfall event. Consequently, over storm event timescales, the actual 

catchment system is open (non-conservative). In order to use the UH technique it is 

necessary, therefore, to apply a loss model to estimate the effective rainfall hyetograph, 

calculate the stormflow using the UH, and separately predict the baseflow so that the 

total streamflow can be obtained. 

However, the identification of a definitive loss model remains an open problem, and a 

number of approaches have been proposed. Horton (1933) assumed that the generation 

of runoff takes place when the rainfall intensity exceeds the rate of infiltration into the 

soil. Field measurement of infiltration capacity at the plot scale typically shows a 

power law decay curve with time, tending towards a constant rate as the soil becomes 

saturated. Horton (1940) showed that this rainfall loss rate by infiltration can be 

modelled as an exponential decay curve. However, in practice, there is of^en substantial 

variation in infiltration rate across the catchment area making it difficult to identify 

uniquely and antecedent conditions influence the starting infiltration rate (Beven 2000). 

A simplification, at catchment scale, is to assume a constant loss rate such that the 

volume of effective rainfall equates to the runoff volume. This is the basis of the W-

index and ^index methods, where the former allows for the interception of water by 

vegetation and the retention of water in surface ponding (Cook 1946). However, these 

8 



indices are event specific, and, therefore, somewhat arbitrary for a given catchment. 

Correlation of rainfall-streamflow records with meteorological and catchment 

characteristics including antecedent moisture conditions has been used to develop 

catchment-specific predictor charts and equations for losses, including the antecedent 

precipitation index, API (Kohler and Linsley 1951), and the related catchment wetness 

index, CWI (Natural Environment Research Council 1975a). The COT concept has been 

further utilised in the formulation of non-linear filters that separate losses from rainfall 

(Whitehead et ai 1979; Jakeman et aL 1990). In this approach the Cm represents 

catchment soil moisture content and is estimated by applying a first-order discrete time 

filter (i.e. low pass filter) to antecedent observed rainfall (similar to the calculation of 

the API). The rainfall can be adjusted to take account of evapotranspiration changes 

through empirical multipliers that depend on temperature. Young and Beven (1991; 

1994) simplified the rainfall filter by replacing CWI by streamflow on the basis that 

streamflow results fi-om a low pass filtered rainfall series. In this way the effective 

rainfall can be calculated as a function of the product of observed rainfall and time-

lagged streamflow. The alternative approach of a water balance at the lumped 

catchment scale to calculate losses based on the conservation of volume allowing for 

evapotranspiration and soil moisture deficit has been successfully applied for daily data 

rather than at the hourly timescale (Natural Environment Research Council 1975a; 

Evans and Jakeman 1998). The UK Flood Studies Team (Natural Environment 

Research Council 1975a) developed a percentage runoff (PR) to represent conceptually 

the contributing area effect of a proportion of the whole catchment to stormflow. As 

with the W -̂index and ^index methods, the PR is estimated such that the volume of 

effective rainfall equates to the volume-of runoff. However, Webster and Ashfaq 

(2003) found that the predictor equations obtained from regression analysis of observed 

event runoff estimates with catchment characteristics were not robust. Consequently the 



revitalised FSR/FEH rainfall-runoff* method (Kjeldsen et al. 2005) in the UK uses a 

moisture balance approach but with the Probability Distributed Model (PDM) of Moore 

and Clarke (Moore and Clarke 1981; Moore 1985) to represent the assumed distribution 

of soil moisture storage capacity over the area of a catchment. 

The separation of baseflow fi-om the observed streamflow so that die stormflow can be 

identified and matched to effective rainfall (e.g. for estimation of PR or the ^index) is 

also subject to considerable uncertainty (Tallaksen 1995). Horton (1933) defined the 

"master depletion curve" (master recession curve) as that part of the observed 

streamflow recession hydrograph that results fi-om baseflow after the stormflow has 

ceased and noted that it can be modelled by Maillet's (1905) exponential decay equation 

which assumes that baseflow is proportional to the remaining storage volume for no 

recharge. This is equivalent to a linear reservoir model with no inflow. However, Clark 

et al (2009) have found that single linear reservoir modelling of baseflow recession 

becomes less accurate with increasing catchment size. The parameters of the 

exponential decay equation forai of the master recession curve can be found by curve 

fitting to the recession limb of observed hydrographs. The point at which the master 

curve departs ft*om the observed hydrograph denotes the end of stormflow and 

continuation of baseflow. Simpler methods for determining this end point include 

evaluating the change in curvature of the recession hydrograph or the use of filters 

Tallaksen (1995). However tracer experiments by Sklash and Farvolden (1979) have 

shown the significant contribution of groundwater stored in the catchment (prior to a 

storm event) to the whole streamflow hydrograph, emphasising that stormflow and 

baseflow are not independent processes and, consequently, the premise of baseflow 

separation is no longer appropriate. 
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A key aspect of the linear systems approach is to identify the unit hydrograph (i.e. the 

deconvolution problem). For gauged catchments (i.e. with records of observed rainfall 

and stormflow) it is possible to express equation (2.1) in discrete form as equation (2.2): 

'•*=Z'A-y.. forA:= 1,2,3... (2.2) 

where the rainfall, outflow and unit hydrograph are sampled at the same time interval. 

The resulting set of simultaneous linear equations is over-determined for the unknown 

ordinates of the unit hydrograph. The methods of solution that have been attempted 

(including substitution, iterative, least squares, linear and quadratic programming, and 

transformation techniques) with varying degrees of success are discussed in ful l by 

Dooge and O'JCane (2003). In general the unit hydrographs identified ft-om the 

observed data tend to be sensitive to errors in the measurements, often magnifying the 

effects. Furthermore, some methods can produce conceptually unrealistic hydrographs 

with negative or oscillatory ordinates. Smoothing techniques have been developed 

(Boorman and Reed 1981) together with the use of catchment average hydrographs to 

account for the variation in hydrographs identified fi-om different storms. However, the 

latter variation can be substantial for small catchments (Minshall 1960; Pilgrim 1976; 

Wang et al. 1981) and has been observed in larger areas also (Robinson et ai 1995; 

Goodrich et ai. 1997). This observed behaviour is counter to the proportionality and 

superposition properties of the linearity assumption as well as the time-invariance 

underlying equafion (2.1). 

An alternative approach has been to prescribe the shape for a synthetic lUH and fit its 

parameters using observed data, for example the kinked triangle used in the Revitalised 

Flood Hydrograph (ReFH) model in the UK (Kjeldsen et al. 2005) and the triangle used 

in the Natural Resources Conservation Service (formerly the Soil Conservation Service, 
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SCS) in the USA (Natural Resources Conservation Service 2007). A particular merit of 

this approach is that it can lend itself to more parsimonious models (i.e. with fewer 

parameters than the unit hydrograph deconvolution). These parameters can be related to 

physical characteristics from gauged catchments by using regression techniques with a 

view to developing predictor equations for ungauged catchments. For example see the 

Flood Estimation Handbook (FEH) catchment descriptors (histitute of Hydrology 1999) 

and their use in the ReFH model in the UK (Kjeldsen et al. 2005). The development of 

conceptual model approaches that approximate the synthetic lUH are reviewed in 

section 2.3. In spite of the imperfections of the unit hydrograph technique such models 

require relatively little data and are often used in real-time flow forecasting but are 

restricted to the calibration range used in fitting the UH and for individual storm events 

(Young 2002). 

2.2.2 Non-Linear models 

Non-linear models of rainfall-runoff have been found to provide closer approximations 

to observed streamflow than linear models and can be used to relate the gross measured 

rainfall to the total streamflow, q(t), without the need for separating out the net rainfall 

and runoff used in UH methods. Amorocho (1973) gives an overview of the initial 

development of non-linear black box models in terms of Volterra series which take the 

general form: 

^(0=2 f ; ( r M - - . , r j f T / ; ( / - r , V r , (2.3) 

the first term of which is the linear convolution relationship of equation (2.1). 

The difficulty with this approach is that the identification of the kernels of these models 

is generally ill-posed because of the size of the function space being searched, and the 

goodness of f i t of the model to the data can be misleading (Napiorkowski and 
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Strupczewski 1984). A possible way forward would be to reduce the function set to that 

which generates a unique stable solution when there is uncertainty in the observed data 

(Napiorkowski and Strupczewski 1984). In a similar way to linear metric models, the 

general non-linear approach has no direct physical interpretation. However, 

Napiorkowski and Strupczewski (1979) have developed a conceptual model of a 

cascade of non linear reservoirs which can be approximated by the first two terms of the 

Volterra series. 

2.3 Conceptual Models 

Conceptual models use a simplified representation of actual processes at large scale but 

usually do not have physically based measurable parameters. 

2.3.1 Cascades of Reservoirs 

Typically the conceptual representation has taken the form of a virtual reservoir storage 

component through which an inflow is routed. The conservation of mass for a single 

reservoir can be expressed using the continuity equation assuming negligible 

acceleration (Chadwick et al. 2004): 

' • ( 0 - . { 0 = f (2.4) 

where /(/) is the inflow rate at time /, 

q(t) is the outflow rate, and 

V is the storage volume in the reservoir. 

In order to solve for the outflow, a relationship between the outflow and the storage is 

required. This is often assumed to take the following form (Dooge and O'Kane 2003): 

V = Kq^ (2.5) 

where K and c are parameters specific to the reservoir's behaviour. 
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The simplest type of conceptual reservoir is the linear case proposed by Zoch (1934) 

where: 

y = Kq (2.6) 

and K is defined as the storage delay time of the reservoir (K > 0), 

Nash (1957; 1960) applied the conceptual reservoir approach to represent the rainfall-

runoff process for a catchment by routing a delta impulse function through a series 

(cascade) of n identical linear reservoirs (i.e. with identical K values) and applying the 

convolution integral (equation (2.1)). The resulting equation for the ordinates, h{t), of 

the lUH is: 

For integer values of «, r(/i) = (« -1 ) ! (Spanier and Oldham 1987) so equation (2.7) has 

the form of the 2-parameter gamma distribution (with n the equivalent shape parameter 

and nK the equivalent scale parameter): 

' y ^ - ' ' ^ ' (2.8) 

For application to a particular catchment the parameters n and K need to be fitted using 

observed rainfall-runoff data. In order to use the model for ungauged catchments Nash 

(1960) obtained 2 predictor equations based on multiple linear regression of catchment 

characteristics for a range of gauged catchments in the UK. Whilst the fit for the first 

equation was good (correlation coefficient of 0.9) that of the second was less reliable 

(coefficient of 0.5). 
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Numerous variants on the use of linear stores for representing the flow routing have 

been developed; for a comprehensive review see Singh (1988). Of particular note is the 

inclusion of linear channels that represent a time delay which a single linear reservoir 

does not model. Dooge (1959) introduced the linear channel and derived a general 

theory for the unit hydrograph that was based on a cascade of linear channels and 

reservoirs in series. Chow and Kulandaiswamy (1971) showed that the cascade models 

can be derived from a general ordinary linear differential equation relating storage and 

flow continuity. Valdes et al (1979) extended the reservoir cascade concept to the 

modelling of natural surface drainage channel networks - the geomorphological 

instantaneous unit hydrograph and Wang e/ a/ (1981) generalised the lUH to allow for 

time variation in the rainfall history (the instantaneous response fianction), 

Dooge (1973) wams that strictly any proposed form of equation for the lUH can only be 

described as a "synthetic" unit hydrograph model i f its parameters can be demonstrated 

to be related to physical characteristics of a catchment. This is particularly important 

when the model is to be applied to the prediction of streamflows for ungauged 

catchments. Kachroo and Liang (1992) and Dooge and O'Kane (2003) present reviews 

of a number of forms of synthetic lUH. Jeng and Coon (2003) have identified 

improvements that could be made to Nash's original lUH model in terms of the validity 

of the assumed initial condition of zero inflow and the use of spatially distributed 

rainfall inputs by means of sub-catchment lUH's. Furthermore Singh (1964; 1988) has 

derived other UH forms using classical methods which could also be investigated fi'om 

a fi^ctional calculus viewpoint, and could be extended to the case of a cascade of equal 

non linear reservoirs (Diskin et ai 1984; Ding 2005; Dooge 2005). 
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2.4 Physics-Based Models 

Physics-based models have developed from the blueprint of Freeze and Harlan (1969), 

for example the "SHE" model (Abbott et al. 1986a; Abbott et al. 1986b). They are 

based on the coupled partial differential equations representing the conservation of mass 

and momentum for free surface overland flow and the sub-surface saturated and 

unsaturated flow processes solved numerically on a grid. Through the use of physics-

based theoretical and semi-empirical equations derived from laboratory scale tests it is 

possible to make use of measurable parameters, which makes this approach attractive 

for scenario testing, for example land use change predictions (Williams et al. 2004). 

However, the "upscaling" to represent the flow processes at the much larger catchment 

grid scale assumes without proof that the grid point parameters are an averaged 

(lumped) representation of the sub-grid heterogeneity of the catchment (e.g. topography, 

soil, vegetation, etc); and that the process scales are the same (Beven 1989; Bloschl and 

Sivapalan 1995). The number of parameters required to solve the different process 

equations at each grid point is substantial and the values are likely to vary over the time 

of the rainfall events being simulated. This leads to problems in the calibration of the 

model given the limited quantity and resolution of observed data for a given catchment 

(Beven 2006a). Yawson et al (2005) have demonstrated the utility of systems-based 

models over higher complexity models particularly where data is scarce. Furthermore, 

there are issues concerning the use of different time steps for the stable solution of the 

coupled overiand and subsurface flow equations; the non-linearity introduced by the 

modelling of soil moisture characteristics; and the difficulty in representing preferential 

flow pathways (Loague and VanderKwaak 2004). 

In an attempt to overcome the issues of these point scale equations for distributed 

physics-based models is the formulation of the conservation law integral equations for 
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control volumes at the megascale of representative elementary watersheds (REWs) 

(Reggiani et ai 1998; 1999; Reggiani and Rientjes 2005). The subdivision of a 

catchment into REWs (i.e. subcatchments) is based primarily on topography. For each 

REW the conservation balance equations for each phase of flow in each internal zone 

(overland, channel, unsaturated, saturated, etc) are derived. This results in an unknown 

flux term for each equation which represents the area-integrated rate of exchange of the 

mass, momentum or energy between each phase, zone and REW. In order to solve 

these equations it is necessary to propose closure relations that express the unknown 

fluxes over the control surface of the REW in terms of either physically measureable 

quantities or a conceptual function of the internal states (which requires parameter 

fitting by approximate methods). As yet there is no method for measuring the boundary 

fluxes at REW scale nor an agreed functional relationship (Beven 2006b). 

2.5 Data-Driven and Hybrid-Metric-Conceptual Models 

A generalisation of the metric approach is to apply data-driven models such as artificial 

neural networks and genetic programming where both the model structure and 

parameters are unspecified in advance and a heuristic computational search technique is 

used to fit a model to the observed data. 

2.5.1 Data-Based Mechanistic Modelling 

Young and Beven (1994) advocate a top-down approach particularly where the lack of 

data does not support model complexity - the data-based mechanistic model. The 

important feature of this approach over a pure systems identification technique is that 

the user proposes a model structure in response to the outcome of initial tests using 

catchment data. In this way the model form becomes catchment-specific (Sivapalan et 

ai 2003). This does not restrict the user to a specific model form, although some 
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knowledge of viable mathematical forms is necessary. Young (2003) has successfully 

developed a technique for identifying linear models for catchments on the basis of 2 

transfer functions: one to represent fast response (runoff); the other to represent slow 

response (baseflow) and incorporates a power law rainfall loss model. Lees (2000) has 

demonstrated how the technique can be used with nonlinear models. 

2.5.2 Artificial Neural Networks 

Artificial neural networks (ANNs) are based on conceptualisations of the learning 

behaviour of the human brain. They comprise several simple computational units 

("neurons") that have weighted connections with other neurons to form a network. 

Observed rainfall data is passed to a set of input units, which, depending on the 

weighfings, pass a signal to connected units, and so on through the network until an 

output is produced. This is compared with observed streamflow data and the weights of 

the connections are iteratively adjusted until the error between the network output and 

the observation is minimised (i.e. the network is "trained"). Hall and Minns (1993; 

Minns and Hall 1996) were the first to apply ANNs to rain fall-runoff modelling. In this 

form ANNs are non-linear black box models although some work has been done to. 

attempt to derive physically-interpretable process relationships from the network 

(Sudheer 2005). Jain and Srinivasulu (2004; 2006) have developed "grey-box models" 

by coupling an ANN with a determinisfic and a conceptual model. Napiorkowski and 

Piotrowski (2005) compared an ANN with a non-linear model based on the Volterra 

series and found similar performance. In general, ANNs have been observed to forecast 

well provided the input data is consistent with the training set used (Schiitze et al. 2005; 

Shrestha et al. 2005), but are subject to the risk of over-fitting during the training 

(calibration) with a consequential loss of predictive performance when used with new 

input data (Gaume and Cosset 2003). 
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2.5.3 Genetic Programming 

Symbolic regression using Genetic Programming (GP) (Koza 1992) is an automated 

search of a user defined set of mathematical functions and sets of arguments (i.e. 

constants and the rainfall data for a catchment). It is guided by an evolutionary 

computation technique in which an initial population of randomly selected models 

(combinations of functions and arguments) is tested for model fitness (by comparing 

predictions with observed streamflow) and a new population of models is evolved by 

applying reproduction, crossover and mutation operations on selected members of the 

parent population. The selection is made using a probabilistic rule weighted according 

to fitness. The process is repeated with a view to evolving fitter populations. Whigham 

and Crapper (1997) were one of the first to apply GP to rainfall-streamflow modelling. 

Davidson et al (2003) used a GP constrained by user-defined rules to allow polynomial 

expressions to be generated in order to control the growth of the model code (bloat) and 

to improve parameter fitting in each model of the population. Dorado et al (2002) 

constrained the GP function and argument sets to search for unit hydrographs for 

rainfall-runoff modelling in urban catchments. Babovic and Keijzer (2002) showed 

that, particularly for flow forecasting, the identification of GP-based models is 

improved through the use of domain knowledge (i.e. coupling with conceptual model 

output). Similarly, Jayawardena et al (2006) found that the GP approach was not as 

accurate as a conceptual model for smaller catchments. Minns (2000) has compared the 

performance of an ANN and GP and found that the ANN performed better but gave no 

insight to the processes unlike the GP, although some GP runs produced equations with 

no recognizable interpretation in terms of physical processes. 
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2.6 Rainfall-Streamflow Model Identification 

2.6.1 Parameter Calibration 

An essential aspect of connputational rainfall-streamflow modelling is calibration of the 

parameters for the model to fit a set of field observed data. However, the multi­

dimensional nature of many models (particularly conceptual types), parameter 

interaction and sensitivity often results in non-smooth, multimodal response surfaces 

leading to problems in the attempt to identify the model uniquely (Gupta et ai 2003b). 

In many instances this behaviour is due to over-parameterisation (Kirchner 2006). 

Duan et al (1992) identified the existence of a number of regions of attraction in the 

parameter space for a typical conceptual model where the calibration algorithm can 

converge to a solution. These regions were found to contain numerous minor local 

optima. The response surfaces tended to be discontinuous and non-convex with areas of 

parameter interaction. These types of spaces make the search for an optimum set of 

parameter values by traditional gradient-based methods difficult or impossible. 

Consequently, emphasis has been placed on the use of evolutionary search techniques, 

such as genetic algorithms (OA). OA search operates in a similar manner to Darwinian 

natural selection (Holland 1975; Goldberg 1989). In the algorithm an initial population 

of randomly selected sets of parameter values is tested for fitness (by comparing model 

predictions using each set of parameters with observed streamflow) and a new 

population of parameter sets is evolved by applying reproduction, crossover and 

mutation operations on selected members of the parent population. The selection is 

made using a probabilistic rule weighted according to fitness. The process is repeated 

with a view to evolving fitter populations. Goldberg and Kuo (1987) were the first to 

apply the GA to a flow problem in civil engineering, by optimization of a pipeline. 

Wang (1991) first used a genetic algorithm-based automatic calibration of multi-
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parameter conceptual rainfall-runoff models. This application has been further tested by 

a number of researchers (Liong et al. 1995; Franchini 1996; Wang 1997; Yang and 

Douglas 1998; Ndiritu and Daniell 1999). 

Similarly, Dong (2008) achieved improved fitting of the Nash cascade lUH model using 

the GA for an observed flood hydrograph on the Qing river in China. Furthermore, 

Rigden and Borthwick (2008) studied a Genetic Algorithm (GA) used to identify the 

parameters of 7 conceptual lUH model forms. The GA outperformed the traditional 

method of moments (Dooge and O'Kane 2003) for lUH model fitting, and was shown to 

be better suited to parameter identification for observed hourly rainfall-runoff data from 

4 different sized UK catchments. 

2.6.2 Uncertainty Measures 

Although techniques have been developed for automatic calibration of models (Duan et 

al. 2003), there is evidence to suggest that there are different sets of parameter values 

with similariy acceptable fitness, which Beven (1993) defines as "equifinality" (Beven 

2006a). Furthermore, the equifmality concept can be extended to multiple behavioural 

models (acceptable predictions) rather than just different parameter sets for the same 

model structure. In this way the problem is one of mapping the landscape space to a 

model space containing several behavioural models (Beven 2002) and uncertainty is 

manifest in the model structure, parameters and data. For example, Uhlenbrook et al 

(1999) showed that even conceptually unrealistic sets of parameter values could 

produce good predictions. 

In order to attempt to investigate the equifinality problem a number of methods of 

quantifying the uncertainty have been proposed. Kuczera (1983) used a Bayesian 
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approach to estimate the posterior probability distribution of the model parameters, 

expressing the uncertainty using a statistical hkelihood function based upon an assumed 

behaviour of the measurement errors. This technique was later developed into the 

"Metropolis algorithm" using a random walk (Kuczera and Parent 1998). Beven and 

Binley (1992) introduced the Generalised Likelihood Uncertainty Estimation (GLUE) 

technique where the user pre-selects a likelihood objective ftinction (to allow for the 

combined effect of structural, parameter and input errors) for evaluating models the 

parameter values for which are sampled with a Monte Carlo simulation. Non-viable 

models can be automatically rejected and the likelihood values of the remaining models 

can be rescaled before ranking to generate the cumulative distribution of output which 

can be interpreted in terms of the uncertainty (Beven and Freer 2001; Montanari 2005). 

In the light of criticism of the potentially arbitrary choice of likelihood in the GLUE 

method Gupta et al (1998) have noted that it may not be possible to propose a 

statistically correct likelihood function. Additionally, the statistical properties of the 

model prediction errors can depend on the catchment or the flow processes and may be 

both spatially and temporally correlated (Engeland and Gottschalk 2002). Furthermore 

a Bayesian Total Error Analysis (BATEA) framework (Kavetski et a!. 2002) has been 

developed to attempt to account for all sources of error as well as the error model 

structure. 

2,6,3 Objective Functions 

The fitness of a given set of parameter values for a model is defined by one or more 

objective functions which provide a numerical measure of the level of agreements 

between model predictions and observed streamflow. A number of reviews have been 

undertaken of the use of common single objective functions in rainfall-streamflow 

model calibration (Diskin and Simon 1977; Cooper et al. 1997; Legates and McCabe 
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1999). In many cases the simple least squares (or root mean square error, RMSE) or the 

Nash-Sutcliffe efficiency, NSE (a normalized version of the RMSE) has been used, but 

these tend to emphasize the fitting of peak flows. 

Jakeman and Homberger (1993) have indicated that the use of single measures of 

fitness for calibration of models with just rainfall and streamflow data enables up to 5 or 

6 parameters to be identified. Consequently to avoid the proliferation of behavioural 

models, multi-objective calibration to reflect the application requirements rather than 

single measures of fitness has been employed which extracts more information fi-om the 

observed data and thereby constrains the calibration. Yapo et al (1998) developed a 

multi-objective complex evolution technique (MOCOM-UA) derived from the shuffled 

complex evolution (SCE-UA) method (Duan et al. 1992) which uses Pareto ranking and 

has been tested using 2 objective functions on the Sacramento soil moisture accounting 

model with observed data; and extended to 3 objectives (Gupta et al. 1998). Madsen 

(2000) used 4 objectives to represent the runoff volume, hydrograph shape, peak flows 

and low flows and then computed an overall fitness measure using the Euclidean 

distance incorporating user-defined transformation constants for each component 

objective function. This was then optimized using the SCE-UA. Gupta et al (2003a) 

followed Boyle et al (2000) and partitioned the streamflow hydrograph into driven and 

non-driven components and used the root mean square error for each component as the 

objectives in the MOCOM-UA technique, but found that the endpoints of the Pareto 

optimal parameter sets identified were not well defined. Consequently, Vrugt et al 

(2003) developed the multi-objective shuffled complex evolution Metropolis 

(MOSCEM-UA) algorithm based on the SCE-UA but using the Metropolis Hastings 

sampling strategy in place of the downhill simplex to avoid convergence on a single 

optimum. This permits the estimation of the most likely parameter set based on Pareto 
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dominance and the underlying posterior probability distribution to attempt to quantify 

uncertainty. However, the use of multi-objective calibration involves large numbers of 

model runs with the associated computational overhead. With the exception of 

selecting at least one objective function which takes account of the error in the 

measurement data (for example Sorooshian and Dracup (1980) have introduced the 

heteroscedastic maximum likelihood estimator (HMLE) to account for non-constant 

variance error in the observed streamfiow data) there does not appear to be a consensus 

on which group of objective functions should be used in multi-criteria calibration. 

An alternative approach has been to measure the correspondence between predicted and 

observed hydrograph peaks (using the RMSE) coupled with that of the hydrograph 

slopes, using a simple weighted average. This permits a comparison of both the shape 

and timing of the hydrographs widi a relatively small computational overhead, 

overcoming the limitations of the single RMSE measure. This approach has been 

successfully applied to conceptual models (de Vos and Rientjes 2007; Borthwick et ai 

2008). 

Alongside the development of automatic calibration tools has been work on 

incorporating the expertise of the hydrological modeller through user interaction. 

Visualization helps the modeller to observe the complexity of the parameter and 

objective function spaces and assists in the process of selecting a set of parameter values 

for the particular watershed application. Wagener et al (2001) have developed a toolkit 

for identifying both the model structure and calibration of the parameters which uses 

Monte Carlo sampling of the parameter space over the time scale of the rainfall-

streamflow process being modelled using low order (parsimonious) conceptual or 

metric models and provides the user with a selection of visualization techniques for the 
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parameter and objective function spaces. Borthwick et al (2008) have demonstrated the 

use of clustering and visualization, together with interactivity to exploit the expertise of 

the user for the calibration of a conceptual rainfall-streamflow model using the 

interactive visualization system developed by Packham et al (2005). 

2.7 Summary 

The multitude of computational modelling forms highlights the difficulty in 

representing the rainfall-streamflow transformation for natural catchments in a 

consistent manner. For a model to be useable it needs to be based on some agreed 

observed (or assumed) behaviour that can be represented in the form of parsimonious 

equations that can be applied to recorded rainfall data, such as the unit hydrograph 

approach. One of the simple lUH models is the 2-parameter gamma function developed 

by Nash (1957) given in equation (2.7). In the derivation Nash suggests that the 

resulting equation can be used for a fractional number of reservoirs (equation (2.8)) in 

spite of using integer order integrals in the proof Interestingly, using non-integer 

values of n enables flexibility in fitting the parameter values (and hence fitting the UH 

model to the catchment data). This has been selected to be a suitable starting point for 

applying a fractional calculus approach to conceptual rainfall-runoff modelling. 
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Chapter 3 Review of Fractional Calculus Relevant to 
Hydrology 
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3.1 Typical Applications of the Fractional Calculus 

Fractional calculus is concerned with derivatives and integrals of arbitrary order (i.e. 

including non-integer order). Although it was first conceived in correspondence 

between L'Hopital and Liebniz in 1695 and has been developed in the mathematics 

literature since, its broader application to science and engineering problems, including 

hydrological modelling, has really only been undertaken in the last 40 years (see 

Oldham and Spanier (1974) for a review of the range of early applications). In recent 

years there have been advances in the solution techniques for fractional differential and 

integral equations suited to the mathematical modelling of the behaviour of systems and 

materials that exhibit memory, many of which occur in science and engineering 

(Podlubny 1999). Debnath (2003b; 2003a) reviews a number of recent applications in 

science and engineering, including fractional order dynamical systems control, 

fractional order impedance in electrical circuits, viscoelasticity, electrostatics, 

electrochemistry, the behaviour of neurons, and fluid mechanics. Oustaloup et al 

(1999) have developed the CRONE controller which uses fi^ctional order integrators 

and differentiators as more efficient alternatives to Proportional-Lntegral-Derivative 

(PID) controllers for the control of fractional order dynamical systems. In a related 

aspect of the development of the CRONE controller, Oustaloup and Sabatier (1995) 

proposed an electrical analogue model that is equivalent to a fractional order dynamical 

system for the damping effect of water flowing into a porous flood embankment. 

3.2 Applications of Fractional Calculus Relevant to Rainfall-

Streamflow Modelling 

3.2.1 Stochastic Analysis of Hydrologic Time Series Exhibiting 1// Noise 

The existence of long-range statistical dependency (persistence or long memory) in 

hydrologic time series was first identified by Hurst (1951) in assessing the design 
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capacity of reservoirs using annual flow records for the River Nile, and has since been 

observed in a wide variety of other geophysical time series (Koutsoyiannis 2002; 

Mandelbrot 2002). It is commonly referred to as the Hurst phenomenon. The 

examination of very long records of geophysical data such as rainfall, river flow, wind 

power, and temperature, when averaged over relatively long durations (e.g. annually) 

for several locations shows periods of persistent positive or negative departures from 

the mean. For stationary time series this behaviour appears to indicate a very long 

memory process (longer than the timescale of easily identifiable causative physical 

processes that would give rise to short-memory effects). Such a series can be classified 

as a type of \ f f noise whose power spectral density, S(J), follows a power law 

relationship proportional to \lf where / is frequency. For a series of statistically 

independent variables 5 = 0 and is defined as a white noise process, where white noise 

is the derivative of classical Brownian motion (Bras and Rodriguez-Iturbe 1985). Series 

exhibiting long-memory are characterised by the range 0< 5 < I. Mandelbrot and Van 

Ness (1968) were the first to apply a fractional Brownian motion process to simulate the 

long term memory effect in hydrological time series. This was obtained from the 

moving average of a past white noise and is represented by the fractional derivative of 

classical Brownian motion (i.e. the fractional derivative arises because of the 

convolution operation of the noise with a power law function (Lovejoy and Schertzer 

2006)). Hosking (1981) extended the application by fractional differencing of discrete-

time white noise to generate the fractional autoregressive integrated moving-average 

process (FAEUMA) which has the flexibility to represent both long term and short term 

memory effects. It should be noted that the use of these fractional Brownian motion 

(and the associated fractional Gaussian noise) models theoretically assumes an infinite 

memory process, which can only be approximated computationally. In view of the lack 

of a physically-based theory (IClemes 1974) to explain the long-memory behaviour then 
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these models can be classed as conceptual. Indeed other model forms have been 

proposed, for example the use of lag-one autoregressive random processes that are 

subject to random fluctuations of the mean over multiple time scales to simulate 

irregular climate changes (Koutsoyiannis 2002). 

A further feature of hydrologic time series exhibiting \lf noise is that the same power 

law relationship is often observed over a wide range of time scales i.e. the exponent B is 

scale invariant indicating that the series is isotropically scaling (or fractal). Studies of 

the precipitation input to streamflow generation, however, have shown that rain fields 

display intermittent bursts and are better represented by multifi^ctals - a generalisation 

of fractals requiring a spectrum of an infinite number of dimensions to represent the 

anisotropic scaling behaviour (Schertzer and Lovejoy 1987). Similarly multiscaling has 

also been observed for river channel networks and topography, as reviewed by 

Rodriguez-lturbe and Rinaldo (1997). Such multifractals may be represented by 

multiplicative cascade processes involving a reduced number of parameters. In a 

similar manner to the generation of fractional Brownian motion, the multifractal process 

can be simulated by means of fractional integration, this time of a cascade process (the 

fractionally integrated flux, FIF). A review of the development and application of this 

technique for multifractal modelling in geophysical data has been made by Lovejoy and 

Schertzer (2006). Tessier et al. (1996) and Pandey et al. (1998) extended this approach 

to the time series modelling of daily streamflow. They showed that the low frequency 

(greater than 1 week) region of the series could be simulated by a fractional integration 

of the FIF with parameters derived from the observed daily rainfall series. The 

fractional integration arises from a causal power law convolution process (i.e. a linear 

transfer function for the time series transformation of rainfall to streamflow). 

Furthermore detrended fluctuation analysis of hourly rainfall and streamflow series 
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indicated that short-term flucaiations in streamflow were smoother than the 

corresponding rainfall because of damping by the land surface and soil storage 

(Matsoukas et ai 2000). This damping behaviour is increasingly evident at the storm 

event timescaie. Field measurements of the travel times of conservative tracers that 

occur naturally in rain (e.g. chlorides) show a long-memory effect indicating that "old" 

(pre-storm event) water released from prior storage in the catchment dominates the 

streamflow response to a rain storm (Kirchner et ai 2000), i.e. paradoxically water 

appears to be stored over a long time period but is discharged in a relatively short period 

(ICirchner 2003). 

3.2.2 Cavaliini's Proposed Fractional Instantaneous Unit Hydrograph 

Cavallini (2002), following successful applications of fractional calculus to convolution 

equations in solid earth geophysics, has suggested as an ansatz (i.e. without proof) that a 

possible form of synthetic instantaneous unit hydrograph (lUH), /;(/), could be obtained 

fi-om a fi^ctional differential equation. Using the classical lUH for a cascade of 2 

unequal linear reservoirs from Singh (1988) where 

k,k 
h{t) = -^[e'^'-e'^') (3.1) 

Cavallini suggests (without derivation) that a "fi^ctional lUH" should have a similar 

form, namely 

^(') = T \ ^^^'P^M ( ' ) - exp.^, (0] (3.2) 

where k\ and ki are the storage delay times of the 2 reservoirs, respectively; / is time, 

and expv,,ft(/) is the Miller-Ross function (Miller and Ross 1993) defined as 

exp.^(/) = /^-'£.,(^/i (3.3) 

and Ea,^x) is the 2-parameter Mittag-Leffler function (refer to section 4.2.5 for the 

definition). 
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However, Cavallini (2006) remarks that that expressing the lUH as the difference of two 

solutions of first-order fractional differential equations may not always produce a 

positive definite result, and has not developed the lUH further. 

3.2.3 Anomalous Diffusion Modelling in Subsurface Hydrology 

Anomalous diffusion (fractional Brownian motion) is observed for certain natural 

diffusion processes that do not appear to obey the classical Pick's law where the rate of 

spatial spreading of the diffusing particles is not proportional to where / is time (i.e. 

the spread is asymmetric). The mathematical modelling of anomalous diffusion using 

fractional differential equations together with comparisons with observed pollution 

transport processes has been undertaken by several researchers for pollution transport in 

groundwater flow (Baumann et al. 2000; Caputo 2000; Benson et al. 2001; Baeumer et 

al. 2005; Chang et aL 2005; Zhang et al. 2005). The fractional advection diffusion 

equation (FADE) has been applied to urban storm water pollution modelling (Deng et 

al. 2005) and for pollution modelling in rivers (Kim and Kawas 2006). Furthermore 

the FADE has been used to model solute transport in soils by Pachepsky et al (2000) 

who have gone on to propose a fractional form of Richards equation for the modelling 

of unsaturated flow in soil (Pachepsky et al. 2003). A FADE approach has been taken 

by Scher et al (2002) to model the travel times for tracer movement from rainfall on a 

catchment hill slope into a river, as a development of the work of Kirchner et al (2001) 

who applied a simple conceptual model of classical advection-diffusion to produce an 

approximate gamma-type distribution of travel times to match those observed in the 

Plynlimon experimental catchment data set. 
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3.3 Summary 

The fractional calculus has not been applied to rainfall-streamflow modelling at the 

storm event timescale. There is evidence that long memory processes exist in 

hydrologic systems and, given that the fractional order systems approach has been 

applied to the related field of hydrogeological pollution transport modelling, then there 

is the potential for a fractional order theory to be developed for rainfall-streamflow 

modelling, including the problem of identification of the resulting system equarions. 
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Chapter 4 A Fractional Order Hydrologic Systems 
Theory 
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4.1 Methodology 

A new theory that generalises that for the classical unit hydrograph technique for the 

rainfall-runoff transformation is developed in the following. The theory is based upon a 

fractional order linear detenministic systems approach and is taken to apply to the 

rainfall-streamflow transformation (i.e. including baseflow). 

A comprehensive treatment of the fractional calculus can be found in the standard 

reference works, for example Miller and Ross (1993), Samko et al (1993), Carpinteri 

and Mainardi (1997), Podlubny (1999), and Kilbas et al (2006). The ftindamental 

principles and key results necessary for the derivation of the theoretical equations in this 

thesis are presented in section 4.2. It should be noted that there are several forms of 

fractional integrals and derivatives detailed in the foregoing references; however, those 

adopted in this work have been selected on the basis of physically based initial 

conditions and applications made in other branches of engineering science. 

The solution of ordinary linear differential equations (of arbitrary order) using Laplace 

transforms is adopted following common practice (Podlubny 1999). Full details of the 

theory of Laplace transforms may be found in Doetsch (1974). 

Dooge and O'Kane (2003) and Singh (1988) provide introductions to the application of 

classical integer-order linear systems theory to rainfall-runoff modelling. The essential 

results for the general unit hydrograph and general storage equations are presented in 

section 4.3. This sets the context for the development of the fractional order hydrologic 

theory which is proposed in section 4.4. 

36 



4.2 Essential Concepts from the Fract ional Calculus 

4.2.1 The Riemann-Liouville Fractional Integral 

Fractional calculus is concerned with derivatives and integrals of arbitrary order (i.e. 

including non-integer order). In this way it generalises the integer (n) order «-fold 

integrals and w-fold derivatives. For example equation (4.1) is the familiar formula 

(Samko et al. 1993) for the /7-fold integral (usually attributed to Cauchy) of a function, 

/ of a variable /. 

p p / . . . £ / ( / > / / = ^ £ 0 - r r / ( r V r (4.1) 

r is the dummy variable of integration. Since the gamma ftinction r{n)={n-\} 

(Spanier and Oldham 1987) then this equation can be generalised for non-integer values 

of n to define ^D;° the fi^actional integral of order a where a > 0. This can be 

expressed as a left-sided integral for t>a: 

and as a right-sided integral for / < b: 

dr (4.2) 

,A-V(/) := ' dr (4.3) 
r ( a ) J , ( r - / r 

Equations (4.2) and (4.3) are the Riemann-Liouville fii^ctional integrals. Where / is 

time only the left-sided derivative is of relevance to this work since this represents a 

causal system, typical of hydrologic processes. It should be noted that the symbol J or J 

is sometimes used for fractional integrals as distinct from D for derivative. The 

operator D-notation is used in this work, following Podlubny (1999), to indicate a 

"differintegrar* where ^D~" denotes the fractional integral of order a for / > a, and 

„ A " denotes the fi-actional derivative of order a for / > a. 

37 



4.2.2 The Riemann-Liouville Fractional Derivative 

The Riemann-Liouville fractional derivative can be obtained by finding the inverse of 

the fractional integral. Denoting the derivative of any integer order as 

• ^ V ( 0 = ~ ^ / ( 0 = / ' "HO t^eo the left inverse of the integral holds according to the 
at 

following composition rule 

D:.Drf{t)=f{t) (4.4) 

However, using equation (4.2) with a = w the right inverse does not hold (Gorenflo and 

Mainardi 2000) since 

dr 

D : \ D : f { t ) = f { t ) - f ^ f ^ % 4 ^ 

*=o •̂ 

(4.5) 

Consequently, the Riemann-Liouville fractional derivative of order a is defined as the 

left inverse of the a-order fractional integral by incorporating a positive integer m such 

that m-\<a<m as follows: 

.AV(/):=.A^A"^'^V(0 (4.6) 

and hence 

D,V(,):= — 
df V{m-a), m+1 

dr 

(4.7) 

The integral of the product of the 2 ftinctions in equation (4.7) where one function is 

shifted by / - rand the lower limit, a = 0, is a Laplace convolution integral (Doetsch 

1974). For example, for /w = I , it can be written 

r( i -a) 
(4.8) 
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where / > 0 (i.e. causal). The presence of the convolution integral highlights the non­

local property of the fractional derivative operator which, unlike an integer order 

derivative, depends on the "history" of the function between the lower limit, a, and /. 

Hilfer (2008) shows that for causal physical systems non-locality in time represents the 

non-equilibrium (or non-conservative) phenomena of hysteresis, which is observable, 

but non-locality in space is difficult to prove as it implies action at a distance. 

4.2.3 The Caputo Fractional Derivative 

Using the Riemann-Liouville fractional derivative enables fractional differential 

equations to be defined, for example the simple a-order initial value problem of 

equation (4.9) where _y is a fiinction of /, with m-\<a<m and m a positive integer. 

oA>(') = /['.>'(')] (4.9) 

The unilateral (one-sided) Laplace transform is commonly used in the solution of such 

fractional order initial value problems, and which is defined (Doetsch 1974) for / > 0 as 

the image frinction, Y{s) in terms of a complex variable, s, of the original ftinction, y{t), 

by 

L{y[t)]=Y{s)= \y{t)e-'dt (4.10) 
Jo 

For convergence \y{t\< Me'^ for Re(s) > c (for Af and c constants). Unless otherwise 

stated the term Laplace transform in this work wil l be taken to mean the unilateral form. 

The Laplace transform for the Riemann-Liouville derivative in equation (4.9) takes the 

following form (Podlubny 1999). 

m - I 

LI D,V( ' )} = s'-Yis)- Y^s' 0 Dr-'y{0* ) ( 4 . 1 1 ) 
*=0 
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From the right hand side of equation (4.11), for a unique solution of the differential 

equation, m initial conditions are required of the form: 

^ , ^ 0 , l , . . . , w - l (4.12) 

However, it is difficult to identify physically meaningful fractional order derivatives 

necessary for the initial conditions of (4.12). Consequently, Caputo (1967) derived the 

following fractional derivative. 

^AV( / ) :=„d ; 
*=0 

=/[ ' , ; ' (0 ] (4.13) 

where denotes the Caputo fractional derivative of order a to distinguish it from 

D° the Riemann-Liouville derivative. It should be noted that the symbol D° is 

sometimes used for the Caputo fractional derivative; however the form is used in 

this work to facilitate the inclusion of the terminals (limits). Taking the Laplace 

transform of the Caputo derivative (Podlubny 1999) produces: 

m - l 

L^,D':y{t)]=s''Y{s)-Yj''-'-'y^'^^') (4.14) 
t=0 

which shows that the Caputo derivative requires m initial conditions in terms of the 

usual integer order derivatives which are more meaningfiil in physical problems. From 

equation (4.13), the Caputo derivative can be expressed as follows. 

? AV(/) :=« A-*"'""̂  AV(/) (4-15) 

The Caputo has a further property that is shared with the integer order derivative, in that 

the derivative of a constant, C is zero, i.e. 

^A"C = 0 (4.16) 

This is unlike the Riemann-Liouville derivative, where it can be shown (Podlubny 

1999) that for a finite value of the lower limit, a: 
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Further properties of the Caputo derivative may be found, for example, in Li and Deng 

(2007). 

4.2.4 Sequential Fractional Derivatives 

Since integer (/i) order differentiation comprises a sequence of first order 

differentiations then a sequential fractional derivative can be defined (Miller and Ross 

1993) as: 

= p ° D ° . . . ) (4.18) 

n 

where <j= na. Alternatively the overall order of the derivative crcan be composed of 

sequences of unequal order derivatives of the form: 

where a^a^+a^-^-.-. + cc^. The operator can represent the Riemann-Liouville, 

Caputo or other definition of fractional derivative. 

4.2.5 Ordinary Linear Fractional Differential Equations 

In many applications of fi^ctional differential equations to physical problems the 

unilateral Laplace transform technique has used been to obtain solutions to initial value 

problems. As a consequence the Laplace transforms have been found and tabulated for 

a number of the forms of ordinary linear fractional differential equations that arise in 

practice (ICilbas et al. 2006). In order to investigate the influence of the order of the 

derivative on the behaviour of such differential equations the simple case of the 

following homogeneous ordinary linear fractional differential equation expressed in 

terms of the Caputo derivative is considered (Gorenflo and Mainardi 1996). 

^,Dry{ihM^)=0 (4.20) 
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with A > 0 and initial conditions y^^\o)-b^yk^O, 1 , m - \ for m-\<a<m where m 

is a positive integer. 

Taking Laplace transforms and using the result from equation (4.14) gives 

so 

S "T /t 

The inverse Laplace transform of equation (4.21) requires the standard result (Podlubny 

1999): 

4 / ' ' - £ „ , , ( - A / ' ' ) ] = - f ^ (4.22) 

where E^^{x) is the 2-parameter Mittag-Leffler function defined as (Wiman 1905; 

Argawal 1953): 

It should be noted that this reduces to the original 1-parameter Mittag-LefHer fiinction 

(Mittag-Leffler 1903) when >9 = 1, giving 

which further simplifies to the classical exponential function when a = 1. 

Taking the inverse Laplace transform of equation (4.21) gives the solution to equation 

(4.20) as 
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y{t)=Y,b/E^,,,{-Zt'') (4.25) 
*=0 

Taking X = 1 and bk = 1 the solutions for different orders of derivative are plotted in 

Figure 4.1 and Figure 4.2. 

For 0 < a < 1 (Figure 4.1) the solution y{t)=bQE^{-Aj°) decays more rapidly than the 

classical exponential solution (for a = 1) as / —> 0^ but more slowly as / ->c» . This 

power-law asymptotic behaviour of the fractional system exhibits long term memory 

loss (i.e. the system is dominated by more recent states as / increases). This is termed a 

fractional relaxation equation. 
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a= 0.25 

Figure 4.1 Solutions to the homogeneous fractional relaxation equation 

A') 

Figure 4.2 Solutions to the homogeneous fractional oscillation equation 
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For 1 < 2 (Figure 4,2) the solution takes the form y{t) = bQE^{-Ai")+b^tE^ 2{-^") 

which oscillates whilst decaying (unlike the periodic solution for the classical a = 2 

case), and this is termed a fractional oscillation equation. 

4.2.6 The Generalised 3-Parameter Mittag-Leffler Function 

In the solution of ordinary linear ft^ctional differential equations use can be made of the 

generalised 3-parameter Mittag-Leffler fiinction introduced by Prabhakar (1971) which 

takes the form for an argument, x: 

-W=Zl#gr5) ; : i '-^'^'r>o (4.26) •{r)r{ar+ 

When y= 1 this reduces to equation (4.23), the 2-parameter Mittag-Leffler function. 

Furthermore, Kilbas et al (2004) provide a Laplace transform of the 3-parameter 

Mittag-Leffler function for use with fiinctions of a variable / in the following form 

4 ^ - £ ; , ( A / " ) } = ^ i — J , (4.27) 

where A is a constant. 

4.2.7 Initial Conditions 

A significant feature of the fractional calculus is the dependence on the definition of the 

integral for the selection of the initial conditions. For example comparing the Laplace 

transforms in equations (4,11) and (4.14) show the different initial conditions required 

for fractional differential equations expressed in terms of the Riemann-Liouville and 

Caputo derivatives, respectively. In addition, these definitions of the derivative show 

the effect of different sequencing of the differintegral operators. As section 4.2.4 shows 

there are many combinations of differintegrals that can be used to compose a definition 
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of a fractional derivative, each of which wil l have associated initial conditions. 

Furthermore Lorenzo and Hartley (1998) have investigated the initial conditions 

required for fractional differential equations using the Riemann-Liouville derivative and 

show that a time-varying initialisation function is required in place of initial conditions 

as single point values. Similarly, solutions to differential equations expressed in terms 

of the Caputo derivative with the associated initial conditions based on integer-order 

derivatives have been shown to be a restricted class of functions because of the 

assumption of constant initialisation (Ortigueira 2003; Orjuela e/ al 2006; Achar et al. 

2007). 

For example Orjuela ei al (2006) consider the solution of the non-homogeneous form of 

the ordinary linear fractional differential equation (4.20) expressed in terms of the 

Caputo derivative subject to a unit step input function, f/(/), as follows. 

^oDry{thM') = ̂ {0 (4.28) 

Taking Laplace transforms, using equation (4.14), for the case of 0 < or < 1 gives 

s 

so 

Yis) 
3"+A s^+Z 

The inverse transform for each term is obtained from equation (4.22) resulting in the 

following solution, 

y{l) = '"Ea..^ {-^"h '̂(O^ K (- ) (4.29) 

The two terms in equation (4.29) represent the forced response plus the free response of 

the system, respectively. The forced response is the solution of the non-homogeneous 

part of equation (4.28) for zero initial conditions; and the free response is the solution of 
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the homogeneous part of equation (4.28) with the initial conditions included. In this 

way, only the free response of the system is affected by the definition of the fractional 

derivative used and the associated initial conditions. 

For illustrative purposes, taking X - 1 and subject to an initial condition _v(0"*} = 0.5 then 

= ( - ' ' ' ) +0 .5£ „ ( - / ' ' ) (4.30) 

In order to illustrate the influence of the history of the free response function (i.e. time-

varying initialisation function) over the use of a point initial condition value (i.e. 

constant initialisation function) Orjuela et al use a reference response (2006). The 

reference response is the forced response solution for the case of a unit step input 

applied to an initially relaxed system at an earlier time, / = -0.51, such that the reference 

response when / = 0 is y = 0.5, i.e. equal to the initial condition y (0^ = 0.5 for equation 

(4,30). I f the initialisation is correct then the complete response predicted by equation 

(4.30) should correspond to the reference function for / > 0. Orjuela et al (2006) found 

that this only held for the integer order case when a = 1. However, Figure 4.3 shows 

the discrepancy between the solutions for the fractional order case, e.g. when a = 0.5. 
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Figure 4.3 Solution of the inhomogeneous fractional relaxation equation 

(after Oijuela et al (2006)) 

Similar results are found i f the Riemann-Liouville derivative is used. Consequently, for 

the fractional order system constant initial conditions may not necessarily represent the 

true past history of the system response. 

4.2.8 Initialisation Function 

Lorenzo and Hartley (2008) provide a technique for the definition of the initialisation 

ftinction for fractional differential equations expressed in terms of the Riemann-

Liouville derivative. Figure 4.4 shows an arbitrary ftinction//) that originates at a time 

t - -a which is subject to a differintegration operation at a later time of interest, / = c 

(often taken as / = 0 for modelling the response of time varying systems). 
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m / 

f^t) representing 
1 the "history" of/(/) 

^ 

• 
c = 0 

Figure 4.4 Conceptualisation of the initialisation function 

The initialisation required of the function J{i) can be defined by considering two 

uninitialized q-ovdtr fractional integrals ofy(/) starting at / = -A and / = c, respectively, 

as follows. 

^d:-f{,)=^^^{t-ry-'f{r)dT t>c 

(4.31) 

(4.32) 

The denotes an uninitialized integral. From Figure 4.1 J{t) = 0 for / < -a so equation 

(4.31) does not require initialisation. However, the integral in equation (4.32) wil l only 

correspond with the integral in equation (4,31) for t>c i f an initialisation function, y/, 

is added to it, i.e. 

cd;'f{tyy^=-.drf{t) t>c 

so 

V'=-„'̂ rVW-<'/0) = - p g £ - r r 7 ( r V r / > c (4.33) 
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It follows that, in general, ^ is a ftinction of time. This approach to initialisation by 

applying the function defined prior to / = c is referred to as "terminal charging" by 

Lorenzo and Hartley (2008) as compared with applying an arbitrary initialisation 

function at / = 0 ("side charging"). The initialised form of the fractional integral can be 

stated now as 

,A"V(0=.^rV(/)+V' i>c (4.34) 

Substituting equation (4.34) into the definition of the Riemann-Liouville derivative in 

equation (4.6) expresses the initialised derivative as 

c AvC/K/^rc^r^^-^VC^KAv f > ^ (4-35) 

Tor m-\<a<m . Using equation (4.32) the initialised derivative becomes 

dt 

where i//is given by equation (4.33). 

[m-aj Je 
+ t^c (4.36) 

Lorenzo and Hartley (2008) have derived Laplace transforms for the initialised 

fi^ctional derivative for c = 0 and, consequently, - ( 3 < / < 0 so that physical systems 

represented as fractional order initial value problems can be formulated with time-

varying initialisation. Referring to Figure 4.4 the ftinction/{/) on the interval from 

/ = -a to c, upon which the initialisation of the ftincliony(/) being differintegrated from 

/ = c onwards depends, does not have to be identical lofij). Evidently the form of the 

initialisation ftinction must depend on the physical nature of the problem, i.e. the history 

of the system behaviour. However, as Malti et al (2006) point out, the identification of 

the initialisation fiinction from data is an open problem for many systems. Furthermore, 

Lorenzo and Hartley's approach often involves finding the inverse Laplace transform of 

terms involving ftinctions of the complementary incomplete gamma ftinction which are 

not always available in closed form in standard tables (Hartley and Lorenzo 2008). 
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However, the concept of initialisation function does not preclude the use of the Caputo 

fi^ctional derivative which incorporates constant initial conditions, but emphasises the 

restricted class of problems that it describes (recall section 4.2.7). Achar et al (2007) 

show that the inferred initialisation history (for - o o < / < 0 ) for an a-order Caputo 

derivative is a polynomial of the form 

r(« + i) 

where m-\ < a < m. For example for 0 < a < 1 this reduces to / ( / ) = which is 

consistent with the definition of the Caputo derivative in equation (4.13). 

It should be noted that an alternative approach has been proposed by Ortigueira and 

Coito (2008) by treating the problem as a delay differential equation system and using 

the bilateral Laplace transform. 

4.3 Classical Integer-Order Linear Hydrologic Systems 

4.3.1 Integral Equation Approach - Instantaneous Unit Hydrographs 

A lumped system can be conceptualised as shown in Figure 4.5 where a single input, /(/) 

produces a single output, (̂0 as functions of time, /, only (i.e. spatially averaged). 

input, i(t) system, output, q{t) 

// 

Figure 4.5 Lumped system 
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In classical integer-order rainfall-runoff modelling, such as the unit hydrograph (Dooge 

1973; Singh 1988) /(/) is a continuous time history of effective rainfall that produces a 

continuous time-varying outflow, q(t). The system is represented by a system ftinction, 

h, such that 

q{i)=hi{t) (4.38) 

In the classical integer-order unit hydrograph system the outflow is stormflow (runoff). 

In practice, rainfall measurements are usually made as total collected in a time interval 

(typically per hour). Consequently, the continuous input, /(/), is approximated by n 

discrete rainfall pulses of duration At as shown in Figure 4.6. 

'•(0 

'0 

' 1 

At 2A/ 3A/ 

'n-2 

(/i-2)A/ («-l)A/ nAi 

Figure 4.6 Pulse representation of rainfall data (hyetograph) 

Wang and Wu (1983) represent this pulse hyetograph as a series of unit step ftmctions, 

U(t), whereby 
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n 

i{t)=Y^w.U{t-jAt) (4.39) 

and 

W j = i j - i j _ ^ forj= 1,2,...,/? 

Following Singh (1988), as A/—>0 the unit pulse, U(t - jAt) can be replaced by the 

Dirac delta impulse, <$(/); and, as w —> oo so that wA/ = T, then jAt can take all the values 

on the interval [0, 7]. Hence the continuous rainfall function can be represented as 

/(/)= p( r>5( / - r> / r (4.40) 
Jo 

which can be extended over the whole time line - o o < / < o o . Combining equations 

(4.38) and (4.40) gives 

g{t) = h QT)S{t-T)dT (4.41) 
« -oo 

Assuming an initially relaxed, linear system then the principles of superposition and 

proportionality apply so that 

g{t)= I{T)h5{t-T)dT (4.42) 
J-to 

For a d(J) input to such a system the output is defined as the impulse response, h{t, r), so 

that /?(/, T) = hSj - r), and 

q{t)= {i{T)h{t,T)dT (4.43) 
« -00 

Assuming the system is time-invariant, then h{t, r) = hS(^t - r) = h(t - r). Also assuming 

a causal system, h(i, r) = 0 for r > / and r < 0, so that 

q{i)= f / ( r> ( / - r> / r (4.44) 
Jo 

Equation (4.44) is a Laplace convolution integral which represents the response of an 

initially relaxed, lumped, linear, causal, time-invariant system. These conditions are the 
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fundamental assumptions underpinning the unit hydrograph approach to rainfall-runoff 

modelling (Dooge 1973). 

The impulse response function, /;(/), is also referred to as the Green's function or 

transfer function. In hydrological modelling it is called the instantaneous unit 

hydrograph (lUH). It can be found from equation (4,44) by taking the Laplace 

transform of the convolution integral (Doetsch 1974): 

Q{s)= I{S)H{^) (4.45) 

h(t) is obtained from the inverse Laplace transform of equation (4.45) by considering 

the case of a Dirac delta impulse as input, since L{S[t)} = 1. Equation (4.44) can then 

be used to obtain the output, q(t), for any input, /(/), 

4.3.2 Linear Differential Equation Approach 

A lumped, linear, time-invariant system can be represented by an order ordinary 

linear differential equation with constant coefficients, aj, as 

[a„D" + a„_,D"-' + • • + a,D']?(/) = /(/) / > 0 

with initial conditions y^^{o'^)= bj ,J = 0, I , n-\, and the solution takes the following 

form (Doetsch 1974; Miller and Ross 1993): 

^0) = t̂nc«i ( 0 + 9 ^ ( 0 (4-47) 

The forced response, f̂oreed(0> is the solution of the non-homogeneous part of equation 

(4,46) for zero initial conditions 

^ f ^ i ' h [ / ( r K ' - r V r (4.48) 
Jo 

This represents the convolution of the input function, /(/) with the impulse response 

function, h{t). 
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The free response, qrreeO)^ 'S the solution of the homogeneous part of equation (4.46) 

with the initial conditions included 

= (4.49) 

Ck are arbitrary constants, and h(t) is the impulse response function. 

Consequently, equation (4.44) is equivalent to equation (4.48), the solution of an 

initially relaxed non-homogeneous order ordinary linear differential equation with 

constant coefficients (̂ forced(O)- This result is consistent with Nash's (1957; 1960) work 

on the conceptual representation of the impulse response function as a cascade of equal 

linear reservoirs. 

4.3.3 Reservoir Cascade Models 

Recalling equation (2.4), the continuity equation for a lumped catchment system 

modelled by a single conceptual reservoir is given by 

' • ( / ) - ^ ( ' ) = f (4.50) 

where V is the storage volume in the reservoir system. Zoch's (1934) linear reservoir 

(equation (2.6)) assumes that 

V = Kq (4.51) 

where K is the storage delay (i.e. relaxation) time of the reservoir (K> 0). 

Differentiating gives 

^ = K^ (4.52) 

Substituting equation (4.52) into equation (4.50) and rearranging gives 
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Nash (1957) assumed that the system that generates outflow from a rainfall input has 

zero initial conditions (i.e. starts from rest), so equation (4.53) is an initially relaxed 

homogeneous first order ordinary linear differential equation with constant coefficients 

(i.e. it is a first order relaxation system model). The solution is given by equation 

(4.48): the convolution of the impulse response function, h(t), and the input frinction, 

/(/). As before, the impulse response function is obtained as the output of equation 

(4.53) for the case of a delta input, ^ / ) , by taking Laplace transforms, so 

5 / / ( . ) + l / / ( . ) = l 

or 

hence 

h(t)=LA-T-^-

h(t) = ]^e-'^ (4.55) 

Substituting into the convolution equation (4.48) gives the outflow of a single reservoir 

for an arbitrary input as 

<?(')= ^ f/(r)e-('-Wr (4.56) 
A Jo 

This approach can be extended to a cascade of initially relaxed, unequal (different K 

value) linear reservoirs in series by determining the impulse response function where 

the output from the first reservoir given by equation (4.55) to the delta input becomes 
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the input to the second reservoir. From equation (4.54) the impulse response function 

for the second reservoir is 

Continuing for n reservoirs gives 

f^ni^h^ (4-57) 

Taking the inverse Laplace transform (Dooge 1959) gives the impulse response fiinction 

as 

M ' ) = X ^ ; = r ^ '*J' ^r^Kj (4.58) 
J--

1 

However, Chow and Kulandaiswamy (1971) found that 3 unequal reservoirs were 

usually adequate for rain fa 11-runoff modelling applications. Cascades with higher 

numbers of unequal reservoirs lead to less parsimonious models, requiring many more 

parameters to be fitted. For n equal-ZT reservoirs equation (4.57) becomes 

" • • • ' T O 

The inverse Laplace transform yields equation (2.7), the impulse response function for 

the Nash cascade: 

1 r . t e-'^^ (4.60) 

To obtain the outflow of the Nash cascade for an arbitrary input, the impulse response 

function is substituted into the convolution equation (4.48). This is equivalent to 

substituting equation (4.59) into equation (4.45) in the Laplace frequency domain as 

57 



Following Singh (1988) and recalling that the Laplace transform s variable appears 

because of the derivative, — , in equation (4.53), then, using the operator D notation, 
dt 

equation (4.61) can be expressed as 

{\+KDy 

or 

Expanding as a binomial series for integer n (Spanierand Oldham 1987) gives 

y=o V-'y 
='•(') 

Letting 
K 

then 

j=0 

, ( / )= / ( / ) 

which is the same as equation (4.46) for zero initial conditions 

+ «„.,Z)"-' + • • • + a,D'']]{i) = /(/) / > 0 

(4.62) 

(4.63) 

(4.64) 

(4.65) 

i.e. the Nash cascade is modelled by an initially relaxed, n"' order ordinary linear 

differential equation with constant coefficients, a,. This can also be derived from Chow 

and Kulandaiswamy's (1971) general storage equation for br = 0: 

(4.66) 
r=0 

where J, r, m and n are integers, and a, and br are constant coefficients. 
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4.3.4 Lag and Route Models 

Dooge (1959) introduced the linear channel routing concept in the derivation of a 

general theory for the unit hydrograph to model lag effects in catchment response to 

rainfall. The linear channel represents a pure translation where the output is the input 

lagged by a time T\ 

q{t)=i{t-T) (4.67) 

Dooge's theory assumes that the instantaneous unit hydrograph (impulse response 

fiinction) for the rainfall-runoff transformation can be obtained by routing a delta 

impulse through a series of initially-relaxed linear channels and equal-A" linear 

reservoirs. In this way it combines the linear channel with the Nash cascade (i.e. lag 

and route). For the case of a single lag and route model the input to equation (4.53) is 

that from equation (4.67) giving 

f4,W4*-r) (46S) 
The impulse response function for the lag and route model is obtained for the case of a 

delta input, d(j), to the linear channel element which, by equation (4.67) produces a 

d{t -T) input to equation (4.68). Taking Laplace transforms gives 

. / / ( . ) + l / f ( . ) = l . -

Using the 2"** shift theorem for the Laplace transform (delay rule) (Doetsch 1974) 

-{i-T)lK 

h{t) = U{t-T)^-— (4.70) 

where U{t) is the unit step function. 
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The extension to a cascade of n initially relaxed, equal (K, T) lag and route elements is 

made in a similar manner to that in section 4.3.3, by determining the impulse response 

function where the output from the first element given by equation (4.70) to the delta 

input becomes the input to the second element. This is repeated for the remaining 

elements. Combining equations (4.59) and (4.69) gives 

H{S) = J^ r- (4.71) 

Using the 2"^ shift theorem for the Laplace transform 

hit) = U{t-nT)^'~f^~le<""'^f' (4.72) 

This forms the basis for Dooge's general equation for the instantaneous unit hydrograph 

(Dooge 1959). As before, the solution for the lag and route models for an arbitrary 

input, /(/), is found by convolution of /(/) with the impulse response function, h{t) 

(equation (4.48)). 

4.4 Frac t iona l Hydrologic Model 

4.4.1 Assumptions 

A general theory for the systems-based modelling of the transformation of observed 

(total) rainfall to observed streamflow (i.e. stormflow and baseflow together) is 

presented based on the following assumptions: 

1. The output of the system, q{i), is total streamflow to be modelled at the storm-

streamflow event scale (typically houriy intervals) so that floods can be predicted. 

2. The behaviour of the catchment system is spatially averaged (lumped) so that it is 

represented by an ordinary differential equations. 

3. The system is linear so that the principles of superposition and proportionality can 

be used in the solution of the differential equations. 
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4. The catchment characteristics are constant over the total duration of the streamflow 

event (i.e. time-invariant) so that the coefficients of the differential equations are 

constants. 

5. The system is casual so that Laplace convolution integrals can be utilised. 

6. The effective (net) rainfall input, /(/), to the system must be derived from the total 

observed rainfall, iobsiOy by a loss model to account for infiltration and 

evapotranspiration. 

7. The differential equation is of arbitrary (a) order to represent the time-history of 

water storage/flow states in the surface/subsurface catchment system. This is 

expressed by a fractional order derivative form of the linear reservoir. 

8. The streamflow system is not initially relaxed but is subject to an initial condition 

(i.e. a constant initialisation fiinction using the Caputo fractional derivative) to 

represent the mixing effect of "old" (stored) water and "new" water observed in 

streamflow chemistry. 

9. 0 < a < 1 to represent the heavily damped behaviour of the system over the duration 

of the flow event (i.e. non-oscillatory). 

Assumptions 1 - 5 are consistent with those for Dooge's (1959) general unit hydrograph 

theory for rain fall-runoff systems. Assumption 6 is necessary in unit hydrograph 

models because only total rainfall is measured in practice, but water is "lost" through 

infiltration and evapotranspiration that does not contribute to the ensuing streamflow 

event. The fiirther assumptions (7 - 9) generalise the theory to predict the total 

streamflow (i.e. stormflow and baseflow together) as a fractional relaxation model for 

which the classical unit hydrograph is a special case. The non-local property of the 

fi^ctional order derivative is assumed to represent the memory loss in the catchment 

system where pre-stonm event water released from storage in the catchment dominates 

61 



the streamflow response to a rain storm. Consequently, the system is not initially at rest 

(unlike the classical UH approaches for stormflow modelling) but is responding to 

previous event rainfall draining through the catchment. This gives rise to the need for 

an initial condition assumption. 

4.4.2 Single Fractional Order Linear Reservoir 

The simplest model element proposed is the fractional order linear reservoir. Recalling 

equation (4.52) for the integer-order linear reservoir 

dV dq 

m - d t 

From assumption 7 it is proposed that the rate of change of volume, with time, can 

be expressed by an a-order fractional time derivative of the outflow rate, so that 

^ = K'"lD-:q{i) (4.73) 
at 

K is the storage delay (i.e. relaxation) time of the reservoir {K > 0), and is raised to the 

power a, to preserve dimensionality. At this stage the Caputo fractional derivative has 

been used because it incorporates a physically observable initial condition (equation 

(4.13)). Substituting into equation (4.50), the continuity equation for a lumped 

catchment, and rearranging gives a fractional relaxation equation: 

^ D r 9 ( 0 + ^ 9 ( ' ) = ^ ' ( ' ) (4.74) 

Taking Laplace transforms, using equation (4.14), for the case of 0 < a < I (assumption 

9) gives 

S''Q{S)-S''-'Q{0^)+-LQ{S) = ± I { S ) (4.75) 

e(.) = _ / (£ ) . iT leM (4.76) 
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Recalling equation (4.47), the two terms in equation (4.76) represent the forced 

response plus the free response of the system, respectively. The forced response is the 

solution of the non-homogeneous part of equation (4.74) for zero initial conditions and 

takes the form of the convolution of the input fiinction, /(/) with the impulse response 

ftinction, h(t). As before, the impulse response ftinction is obtained as the output of 

equation (4.74) for a delta impulse input, ^ / ) , and zero initial conditions. Substituting 

I { ^ / ) } = 1, then the first term of equation (4.76) becomes 

Using equation (4.22), the inverse Laplace transform yields the impulse response 

ftinction which involves the 2-parameter Mittag-Leffler ftmction, E^^{x) (refer to 

equation (4.23)): 

f'{')~'''-%A-i-kr] (4.78) 

//(/) reduces to the Nash's single integer-order reservoir (equation (4.55)) when a = 1. 

Hence the forced response for equation (4.74) is 

g,^{l) = ^ \ ' { t - T r E j - { ^ y ] i { r ) d T (4.79) 
A Jo 

The free response is the solution of the homogeneous part of equation (4.74) with the 

initial conditions included, given by the inverse Laplace transform of the second term of 

equation (4.76) (again using equation (4.22)): 

(̂h=c(0 = ^o^a -i-kf (4.80) 

where go is the initial streamflow and E^{x) is the I-parameter Mittag-Leffler function 

(refer to equation (4.24)). Since the free response is the relaxation solution for zero 

input, it can be used as a general model for baseflow recession. When a= 1, it reduces 
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to Maillet*s (1905) exponential decay equation traditionally used for baseflow recession 

modelling (Tallaksen 1995). 

The total solution to equation (4.74) is 

9( ' )~ r ( ' - r r ^ . , J - (¥ r l ' ( -V - + ? o ^ J - ( i r l (4.81) 
K Jo 

When a = 1 and for zero initial conditions, this reduces to Nash's single linear reservoir 

equation (4.56). 

4.4.3 Single Fractional Order Lag and Route Model 

Using the outflow of a linear channel (equation (4.67)) as input to the fractional order 

linear reservoir gives the single fractional order lag and route model: 

oDM+J^^{l)=^i{'-T) (4.82) 

where T is the lag time. 

The impulse response function, h(t), is obtained for the case of a delta input, S[t), to the 

initially-relaxed linear channel element which produces a <5(/ - 7) input to equation 

(4.82). Taking Laplace transforms, using equation (4.14), for the case of 0 < a < l 

gives 

H(S) = , (4.83) 

Using the 2""* shift theorem for a Laplace transform (Doetsch 1974) 
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(4.84) 

which reduces to Dooge's single integer-order lag and route model (equation (4.70)) 

when a= \. 

Hence the forced response for equation (4.82) is given by the convolution of the input 

function, /(/) with the impulse response function, h{t). The free response is unchanged 

from that for the single fractional order reservoir (equation (4.80)), so the total solution 

for the single or-order lag and route model is 

,(/) = - J ^ f W ' - 7 ' - r X / - r - r r £ „ J - ( ^ ) r J y ( r V r + ^ „ £ j - ( - r ^ (4.85) 
A Jo 

4.4.4 Cascade of Unequal Fractional Order Linear Reservoirs 

The model of the cascade of fractional order linear reservoirs is derived in a similar 

manner to that for the integer-order cascade (section 4.3.3). In the first instance an 

initially relaxed cascade of unequal-/^ reservoirs in series by determining the impulse 

response ftinction where the output from the first reservoir given by equation (4.78) to 

the delta impulse input becomes the input to the second reservoir. From equation (4.77) 

the impulse response ftinction for the second reservoir is 

assuming the reservoirs have the same order, a. 

Continuing for n reservoirs gives 

HXS) = - ^ (4.87) 

7=1 

For ar= I , this reduces to equation (4.57). Again, the issue of model parsimony limits 

the practical calibration of models with several unequal reservoirs. The case for w = 2 is 

65 



developed as an example (where Ki ^ Ki and K\ >0,K2> 0). Equation (4.86) can be 

rewritten as 

H{s) = 
B 

Cross multiplying 

1 = + 5 ) + [ A K ^ + B K ^ y 

Equating coefficients of like terms in s 

and 

Substituting^ = 1 - 5 gives 

]=A-\-B 

0=AK°-\-BK^ 

and 

A = 
K? 

So 

K: 

Taking the inverse Laplace transform (using equation (4.22)): 

(4.88) 

(4.89) 

The foregoing provides a proof for Cavallini's (2002) proposed ansatz for a fractional 

instantaneous unit hydrograph model (equation (3.2) with k, =-/K, . = '/K, 
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v = a). It should be noted that CavaIIini*s proposed equation is missing the powers on 

the k values required for dimensional consistency. When a = 1, equation (4.89) reduces 

to the classical integer order lUH for a cascade of 2 unequal linear reservoirs (equation 

(3.1) and using Cavallini's A: notation). 

As before, the forced response for an arbitrary rainfall input is given by the convolution 

of the input fiinction, /(/) with the impulse response function, h(t). 

For the case where the cascade is not initially at rest the total solution also requires a 

free response (in accordance with equation (4.47)), and, hence an initial condition for 

each reservoir. In the absence of further information, it is assumed that the first 

reservoir of the cascade has an initial condition equal to the initial observed (total) 

streamflow, and the remaining reservoirs are all initially relaxed (although, strictly, 

this assumption is not proven for surface/subsurface catchment flow processes). 

Consequenfly, the free response is unchanged from that for the single fractional order 

reservoir (equation (4.80)). 

4.4.5 Cascade of Equal Fractional Order Linear Reservoirs 

The impulse response function for the fractional-order equivalent of the Nash cascade of 

initially relaxed equal-ZT reservoirs is derived from equation (4.87) as 

which can be rewritten as 

f f n { s ) = 7 V (4.91) 

Using equation (4.27) the inverse Laplace transform is 
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.na-\ 

= (4.92) 

where E^^{x) is the 3-parameter Mittag-Leffler function (refer to equation (4.26)). 

Again, when a = 1, this reduces to the Nash cascade (equation (4.60)). 

The forced response for an arbitrary rainfall input is given by the convolution of the 

input function, ((/) with the impulse response function, h{t). For the case where the 

cascade is not initially at rest the same argument as for the unequal cascade in section 

4.4.4 is used to obtain the free response (from equation (4.80)) and, hence the total 

solution. 

4.4.6 Cascade of Time-Lagged Equal Fractional Reservoirs 

The impulse response function for the fractional-order equivalent of the cascade of n 

initially relaxed, equal (K, T) lag and route elements to that used in the formulation of 

Dooge's (1959) general instantaneous unit hydrograph is derived in a similar manner to 

that in section 4.3.4. The output from the first element given by equation (4.84) to the 

delta input becomes the input to the second element. This is repeated for the remaining 

elements. Combining equations (4.83) and (4.91) gives 

Using the 2"*̂  shift theorem for the Laplace transform 

K 

Again, when a = 1, this reduces to the equivalent form of Dooge*s general 

instantaneous unit hydrograph (equation (4.72)). The solution for the lag and route 

cascade for an arbitrary input, /(/), is found by convolution of /(/) with the impulse 
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response function, h(t). For the case where the cascade is not initially at rest the same 

tentative argument as for the fractional Nash cascade in section 4.4.5 is used to obtain 

the free response (from equation (4.80)) and, hence the total solution, i.e. 

<!i'h~\k'-'^T-TXi-nT-Tr-'E:J-(i^y]i{^^^ (4.95) 

A Jo 

Equation (4.95) encompasses fractional order reservoir storage-outflow behaviour and 

takes account of initial conditions so that the rainfall-streamflow transformation can be 

modelled by unit hydrograph principles. Effectively, this fiirther generalises Dooge's 

(1959) theory beyond the rainfall-runoff transformation. 

4.4.7 A Fractional Order General Storage Equation - Initial Form 

The relationship between the fractional order cascade models and a general storage 

equation akin to Chow and Kulandaiswamy's (1971) equation can be undertaken in a 

similar manner to that used in section 4.3.3. In order to investigate the form of such a 

fractional order general storage equation, and because of the implications for the 

interpretation of the Nash model, the case for a cascade of fractional order equal-A" 

linear reservoirs is considered. 

From section 4.3.2 the form of the differential equation depends on the forced response, 

f̂orced(0» namely the solution of the non-homogeneous equation for zero initial 

conditions expressed as the convolution of the input function, /(/) with the impulse 

response function, h(t) (equation (4.48)): 

Jo 

The Laplace transform of this convolution integral is equation (4.45): 
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Q{s)=l{s)H{s) 

Substituting for H(s) from equation (4.90) for the fractional order cascade of equal-A' 

reservoirs: 

e(.)=/(4 

As before, recalling that the Laplace transform s"" variable represents the fractional 

derivative (taken in the Caputo sense), , then 

(4.96) 

or 

(i + /:-A'')'9(/)=/(0 

Expanding as a binomial series for integer n (Spanier and Oldham 1987) gives 

(4.97) 

(4.98) 

Letting 
K 

then 

7=0 
<l{t)=i{t) (4.99) 

which can be written as the following initially-relaxed ordinary na order linear 

differential equation with constant coefficients, a,. 

When a = 1 this reduces to Nash's (1960) differential equation for the integer-order 

cascade (equation (4.65)) and to Chow and Kulandaiswamy's (1971) general storage 

equation (equation (4.66) for br = 0), 
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Replacing (n - 1)! by the gamma function r(n) in the impulse response function for the 

cascade of equa\-K reservoirs, Nash (1957; 1960) allowed n to take on non-integer 

values, taken to mean a "fractional" number of reservoirs. This practice has continued 

since (Dooge and O'Kane 2003). However, when n is non-integer, say replaced by 

where 0 < /? < 1, then equation (4.97) becomes 

( i + / f ' ' ^ A ° r ^ ( ' ) = ' ( o (4101) 

For a positive integer, m, a binomial function {l + xf is equivalent to a finite w-term 

classical Taylor series expansion of the function about x = 0, where the Taylor series is 

comprised of integer-order differential terms, but for non-integer m the series is infinite 

(Spanier and Oldham 1987). Consequently, in the case of a non-integer value for /3n the 

binomial expansion has an infinite number of terms and equation (4.99) becomes: 

it) = i{i) (4.102) 

which has an infinite number of fi^ctional yof-order differential terms. Furthermore, 

this implies that the free response part of the total solution requires an infinite number 

of initial conditions. Similariy, for the Nash cascade, where a = 1, then the equation 

reduces to an infinite number of integer y-order differential terms. A further 

mathematical argument against this fractional n interpretation is that 7 ^ r- is not 

rational for non-integer values of n and cannot be expressed as partial fractions. 

Therefore the notion of a "fractional number" of reservoirs needs revising from a 

mathematical viewpoint. 
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4.4.8 A Fractional Order General Storage Equation - Final Form 

In order to correctly interpret the Nash cascade model for non-integer pn value, it is 

proposed that a finite series expansion of the binomial function is necessary. Such an 

expansion is proved in the following. 

Wheatcraft and Meerschaert (2008) have applied the generalised Taylor*s formula of 

Odibat and Shawagfeh (2007) to give a finite representation of non-linear flux in a 

fractional conservation of mass equation for flow in porous media instead of the infinite 

series produced by the classical Taylor series. Consequently, the generalised Taylor's 

formula can be used to derive the finite series expansion of the binomial function of 

fractional order. Odibat and Shawagfeh*s generalised Taylor's formula for a function 

j[x) expanded about :c = a > 0 is: 

where 0 < > ^ < l , n is a positive integer, and %Df f { x ) is the sequential Caputo 

fractional derivative defined for j = 0, 1 , n as oD/V(0= o^fo^f-'-o^fA^)- is 

y-limes 

the remainder term. 

In the case of a binomial function f{x) = {\+xy^, the expansion about x = 0^ is 

developed as follows. 

For the first tenm (J = 0^: 

For the second term (/' = 1): 

',Dff{x)= ( 1 4 - x r " 

so 
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For the third term (J = 2): 

rM+i ) (l + x)" 

so 

r M - ; 5 + i ) r ( « > 9 - ^ + i - / 9 ) ^ ' 

^ _ p n p ^ . y . , , 

r{np-2p + \y ' 

For the fourth term (/ = 3): 

r{np-2p+l) 

= r M + i ) r{np-2p+i) , 
r(«y5-2yS + l) T{np-2p + \ - p y ^ 

3̂  

SO 

For the (n+l)^ term, y = w, so ^ D f f { x ) is a constant. Consequently higher order 

sequential Caputo fractional derivatives are zero, so the series terminates for j > n. 

Therefore, the expansion of the fractional order binomial function is 

n 

(4.104) 
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It should be noted that when fi= \, equation (4.104) reduces to the classical binomial 

expansion for integer n. 

Equation (4.104) is used to expand the binomial in equation (4.101) for the fractional 

order cascade 

^ ' ^ r [ ( « - y ) y 9 + i]r077 + i)^ » 

^ r M + i ) 

Letting ' r{{n-j)p + yY(jP^\) j^en 

Y,<oDr q{t)=i{t) (4,105) 

which can be written as the following initially-relaxed ordinary /Jna-order linear 

differential equation with constant coefficients, aj. 

k^A"'^+«,„-,)oA^"" '* ' "+ - + « o k ' ) = ' ( ' ) >^o (4,pg) 

where ^D;^°q{t) is the sequential Caputo fractional derivative defined as 

lorqitXDf 'iDf.. .'oOroDM (4-107) 
y-times 

Equation (4.106) is a more generalised form of Chow and Kulandaiswamy's (1971) 

general storage equation (compare with equation (4.66) for br = 0). This is an ordinary 

fractional differential equation, with a finite number of terms representing a finite 

number, n, of virtual reservoirs of sequential order a/], where 0 < a < I and 0< fi<\. 

When a = 1 equation (4.106) reduces to an ordinary fractional differential equation 

form of Nash's (1960) model for a cascade of /^n equal integer-order reservoirs. This 

corrects the interpretation for a "fractional number of reservoirs". When a = I and 
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y^= I , Nash's equation (4.65) is recovered for integer n. Furthermore, the free response 

part of the total solution to equation (4.106) requires a finite number of initial 

conditions. 

It follows that the new generalised cascade model is still achieved by using a single 

composite fractional order a in place of afl in equation (4.106). hi this way 

conceptualisation of the model using an integer number of reservoirs (i.e. with ^ = 1) is 

adequate. 

In order to investigate the form of the free response solution for the generalised 

fractional cascade model it is necessary to derive the Laplace transform of the Caputo 

sequential derivative, « o A ^ o A ^ " - o A ^ / W - Since 0<fi<\ then, from 
V 

_/-time 

equation (4.14), for a single Caputo derivative 

Li^Ofqitps^Qisys^-'qio^) (4.108) 

Let q^{t)=%Dfq{t) with an initial condition q^{^^y=^Dfqip^^ then for the sequential 

derivative let q^{t)=^Dfq^{t) with an initial condition q2{o^)=^DfqXo^) 

Continuing in this manner, then q„{^)=oDfq^X^) with an initial condition 

Using equation (4,108) the corresponding Laplace transforms are: 
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Substituting the sequential derivatives into these transforms gives: 

Continuing gives die general form for any integer number, n, of sequential derivatives 

of equal order /? as 

n-l 

^{o A"̂ (0}= ̂ "''el^)- 2 *̂"-'*̂ "̂ -'̂ *̂ *̂(0 )̂ (4.109) 
j=0 

It is worth noting that equation (4.109) is the equivalent to that for the Riemann-

Liouville sequential derivative (Ortigueira 2003). 

The consequence of equation (4.109) is that the free response part of the total solution 

to equation (4.106) requires a substantial number of initial conditions expressed as 

functions of the Caputo derivatives evaluated at / = 0^. This raises the issue of the 

complexity of the generalised cascade model with multiple reservoirs for practical 

application where the system is not initially at rest (unlike the rainfall-runoff 

transformation system assumption). Furthermore, i f Lorenzo and Hartley's (2008) 

approach is taken to overcome the restriction of using constant initialisation with the 

Caputo derivative and time varying initialisation functions are introduced then each 

derivative term requires an associated initialisation function. This would add 
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substantially to the model complexity. The implications for the development of 

parsimonious fractional order cascade models are significant. Consequently, it is 

proposed that a single fractional order time-lagged linear reservoir subject to a single 

initial condition wil l be adequate for modelling the rainfall-streamflow transformation. 

This proposal wi l l be tested using observed flood event data (re. section 5.4), 

4.4.9 Initialisation Function Considerations 

In the derivation of the fractional order models considered the Caputo fractional 

derivative has been used which, in accordance with equation (4.37), infers that the 

0 < a < 1 system is subject to a constant initialisation ftmction in the sense of Lorenzo 

and Hartley (2008) to represent the mixing effect of "old" (stored) water and "new" 

water observed in streamflow chemistry. This initialisation fiinction is taken as the 

initial streamflow at the start of the event. Given that the initialisation ftmction 

representing the surface-subsurface storage-flux history is not easily defined (for 

example see Kirchner (2003)) then the identification of the true ftinction is likely to 

require further field studies of the interaction between the "old" and "new" water in the 

generation of total streamflow. For the purposes of this work the constant initialisation 

has been used (recall assumption 8 in section 4.4.1). 

A recommendation for potential fiiture development is to assume that the baseflow 

recession characterises the surface-subsurface storage-flux history of a river and that it 

can be represented by the new theoretical general equation (4.80). It should be noted 

that the derivation of the required Lorenzo and Hartley (2008) initialisation ftinction, y/, 

involves determining Laplace transforms of terms which are not always available in 

closed form (Hartley and Lorenzo 2008). 
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4.5 Summary 

Assuming that the time-history of water storage/flow states in the surface/subsurface 

catchment system can be represented by a fractional-order derivative form of an initially 

un-relaxed, lumped cascade of time-lagged, linear reservoirs a new theoretical model 

for the transformation of effective rainfall to total streamflow has been derived. The 

classical unit hydrograph for rainfall-runoff modelling appears as a special case (for 

initially relaxed, integer-order systems). The properties of cascades with equal and 

unequal storage characteristics and varying numbers of reservoirs have been 

investigated and, in particular, the implications of the initial conditions required. 

Consequently, the classical Nash cascade of n reservoirs has been reinterpreted for 

fractional n and Cavallini's (2002) proposed ansatz for one form of a fractional 

instantaneous unit hydrograph model has been proved (in a corrected form). 

Furthermore, two new mathematical results for the fractional calculus have been 

derived, namely a finite series expansion of the binomial function for a fractional power 

and the Laplace transform of the Caputo sequential derivative. 
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Chapter 5 Rainfall-Streamflow Model Testing 
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5.1 Methodology 

The fractional order theory was tested using a selection of observed rainfall-streamflow 

events for a range of catchment scales provided from the UK Flood Event Archive 

(courtesy of the Centre for Ecology and Hydrology). The application of the fractional 

order theory to the special case of effective rainfall to stormflow (runoff) modelling was 

tested on the pre-processed data set published by Bree (1978). The mathematical 

limitations of the numerical evaluation of the fractional order impulse response function 

are identified and a novel series solution developed from the work of Wang and Wu 

(1983) is presented in section 5.2. 

The calibration of the model equations was undertaken using the genetic algorithm 

(GA) technique to utilise its superior parameter-fitting capability over the classical 

method of moments reported by Dong (2008), and Rigden and Borthwick (2008). The 

GA control parameters and fitness functions used are presented in section 5.3. 

In the light of the theoretical study of the influence of initial conditions on the 

development of parsimonious fractional order cascade models (re. section 4.4.8), 

particularly where sequential fractional order reservoirs are used, a single fractional-

order, time-lagged, linear reservoir subject to a single initial condition was used to test 

the viability of the new theory for modelling the rainfall-streamflow transformation. 

For the simpler case of the effective (net) rainfall to stormflow (runoff) transformation 

uninitialized cascade models were tested against the classical Nash cascade. The details 

of the test catchments and flood events are given in section 5.4. 
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5.2 Numerical Methods 

5.2.1 Limitations of the Convolution Formulation 

Koutsoyiannis and Xanthopoulos (1989) exemplify the method commonly used for the 

identification of the parameters of a synthetic instantaneous unit hydrograph (i.e. the 

impulse response function) model, namely that parameter optimisation is done by 

minimisation of a fitness (objective) function. They present the following four steps: 

1. calculation of the instantaneous unit hydrograph (lUH) ordinates using a chosen set 

of parameter values in the theoretical model equation, 

2. scaling the lUH to calculate the synthetic unit hydrograph corresponding to the 

rainfall duration, 

3. calculation of the predicted runoff hydrograph by convolution of the synthetic unit 

hydrograph with the effective rainfall hyetograph, and 

4. calculation of the fitness function (i.e. the measure of the error between the observed 

and predicted hydrographs). 

Step 3 is the classical unit hydrograph convolution integral (equation (4.44)) evaluated 

from the initial time, / = 0^ to the time of interest /. This approach is almost universally 

used in unit hydrograph modelling (Dooge and O'Kane 2003). However, this presents a 

problem for the numerical evaluation of the fractional order impulse response function 

models of single (unique K value) reservoirs developed in section 4.4 at time zero, 

because of the t"'^ multiplier with 0 < a < 1. Recalling equation (4.77) for the Laplace 

transform of the impulse response function for a single fractional order reservoir: 
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and applying die initial value theorem of the Laplace transform (Doetsch 1974) of a 

ftinctionXO 

/ ( 0 ^ ) = l i m / ( / ) = lim^F(^) (5.2) 

gives 

/i(0^)=lim —r— \ = oo (5 3) 

This demonstrates the unbounded behaviour of the impulse response fiinction at / = 0, 

which is a common feature of fi^ctional relaxation equation modelling (Podlubny 

1999). It also explains Cavallini's (2006) remarks that expressing the lUH as the 

difference of two solutions of first-order fractional differential equations may not 

always produce a positive definite result. 

5.2,2 Unit Step Response Formulation 

In order to overcome the initial value problem of the impulse response fimction it is 

necessary to note that i f the expression in equation (5,3) is multiplied by \/s it tends to 

zero as 5 ->oo. From the integral theorem of the Laplace transform (Doetsch 1974) 

L \ \ f { T ) d T \ = - F { s ) (5.4) 
Jo s 

then this requires recasting the original model so as to obtain die integral form of the 

impulse response function (i.e. the step response function). Fortunately, this is possible 

given fact that the rainfall input ftinction, /(/), can be approximated by m discrete 

rainfall pulses of duration At as this is typically how it is measured in practice (re. 

section 4,3,1). Recalling equation (4.39), Wang and Wu (1983) represented this pulse 

hyetograph as a series of unit step functions, U(t), whereby 
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/ ( / ) = 2 v v , t / ( / - y A / ) 
7=0 

with 

and expressed the Laplace transform as 

Wang and Wu went on to incorporate this result in the Laplace transforms of the 

integer-order differential equations for the cascades of linear reservoirs and lag and 

route models (c.f section 4.3.3 and 4.3.4) and produce solutions in terms of the step 

response functions that did not require the convolution integral for evaluation. This 

technique is developed here in order to utilise the common \/s factor of equation (5.5). 

Recalling equation (4.76), the Laplace transform of the differential equation of the 

fractional order reservoir model 

Only the first term (the forced response) need be considered since the free response 

(second term) is independent of I{s). Replacing J(s) with equation (5.5) then the forced 

response is 

Comparing with equation (5.1) this can be written 

7=0 

or 
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Qtr^{s)=G{s)^w.e'^-^' (5.8) 

where 

It should be noted that equation (5.8) can be used generally for other forms of G(s) 

representing other models. 

Using equation (4.22) the inverse Laplace transform of G(s) is the unit step response 

function, g{t) 

g{')=-^'''E.A-iiT] (5.10) 

Now applying the initial value theorem to equation (5.9) 

which is now bounded. 

Using the 2"^ shif^ theorem then the inverse Laplace transform of equation (5.8) for the 

forced response of the single fractional order linear reservoir can now be found as 

7=0 

As noted above, the free response is unchanged from the original derivation (equation 

(4.80)), and can be added to the forced response to give the total solution. 

5.2.3 General Unit Step Response Model 

Consequently, from equation (4,93) the step response function for the cascade of n 

initially relaxed, equal (K, T) fractional-order lag and route elements can be obtained 
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Using equation (4.22) and the 2"** shift theorem the inverse Laplace transform gives 

U{t-nTlt-r,TrE:^J-[^y 
SK'j- (5.14) 

Again using the 2"** shift theorem then the inverse Laplace transform of the general 

equation (5.8) is obtained as 

W = ^ X -nT-j^tlt-nT- jAiT [" ] (5.15) 

As before, the free response can be added to the forced response to give the total 

solution. 

Equation (5.15) is the most general form of the models. The other models can be 

obtained as particular cases as follows; 

• w = I gives the single reservoir models 

• a = 1 gives the classical integer order reservoir models 

• r = 0 gives the unlagged models 

It should be noted that the case for the single integer-order lag and route moder(w = 1, 

a = I) derived from equation (5.15) corrects that presented in Wang and Wu (1983). 

The numerical solution of equation (5.15) was undertaken using a bespoke computer 

program written for this study. The 3-parameter Mittag-Leffler function (equation 

(4.26)) could only be approximated in a computer by truncating the infinite series for 

terms with vanishingly small values. For calibration of the models with the observed 

events the streamflow units (in mVs) were converted into mm/hour (over the area of the 
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catchment concerned) to be consistent with the rainfall units. For presentation and 

comparison purposes, the predicted streamflow units were converted back into mVs. 

5.2.4 Rainfall Loss Model 

I f it is assumed that there is a "loss" of water from the measured rainfall due to 

infiltration and evapotranspiration, which does not contribute to the measured 

streamflow event, then a rainfall loss model has to be applied. However, it should be 

noted that infiltrated water has a contributory effect on subsequent streamflow events 

because of baseflow recharge to the stream. In order to test the influence of the loss 

model on the performance of the fractional order streamflow models studied, observed 

storm events were run for the case of the observed (total) rainfall, iotsiO (i-^- without a 

loss model), and of effective (net) rainfall, /(/) (i.e. having applied a loss model). 

As reviewed in section 2.2.1, there are a number of approaches that have been proposed 

for loss modelling, including: 

• an exponential decay function to simulate infiltration (Horton 1940); 

• a constant loss rate, ^index, such that the effective rainfall volume equals the runoff 

volume (Cook 1946); 

• a proportional loss rate, percentage runoff (PR), to represent contributing areas to 

stormflow such that the effective rainfall volume equals the runoff volume (Natural 

Environment Research Council 1975a); 

• a low pass filter applied to rainfall based on a catchment wetness index (CIVI) to 

represent soil moisture content (Whitehead et al. 1979; Jakeman et al. 1990); 

• a non-linear filter based on streamflow to replace the CWI (Young and Beven 1991; 

1994); and 
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• a Probability Distributed Model (PDM) of catchment moisture storage (Moore and 

Clarke 1981; Moore 1985). 

The fitting of an infiltration-type model is dependent on the initial infiltration rate and 

by variation across the catchment area (Beven 2000). However, no infiltration capacity 

data was available for the Flood Event Archive catchments. The PDM model used in 

the revitalised FSR/FEH rainfall-runoff (RePH) method (Kjeldsen et al. 2005) needs an 

initial soil moisture content which, for the ReFH model, is estimated from a daily soil 

moisture accounting model applied to a year's record of daily catchment average 

rainfall and evaporation. Again this antecedent time series data was unavailable for the 

Flood Event Archive events. Young and Beven's (1991; 1994) simplified rainfall filter 

requires less data and fewer parameters than the approach to simulate soil moisture 

storage change, so that the effective rainfall can be calculated as a function of the 

product of observed rainfall and time-lagged streamfiow. Consequently the ^index, 

PR, and non-linear filter based on Young and Beven (1994) were selected for loss 

model testing. 

The effective rainfall, /(/), for the ^index model is given by 

where ^ is the constant loss rate. 

The effective rainfall, /(/), for the PR model is given by 

KO = PR-io^{i) (5.17) 

where PR is the percentage runoff. 
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It should be noted that separation of the observed streamflow hydrographs into 

stormflow and baseflow (as undertaken in traditional UH analysis) is not required since 

the objective is to apply the fractional order systems models to predict the streamflow 

directly. Given that the actual catchment system is open (non-conservative) then the 

concept of matching the effective rainfall and stormflow volumes so as to specify the ip-

index or PR is not applicable, unlike the integer order system. This, however, raises the 

question of the validity of these loss models in the context of the fractional order system 

approach. 

The effective rainfall for the non-linear filter was assumed to be a product of the 

observed rainfall, iobs(0> and a power function of the calculated (total) streamflow q(t) 

and the previous model timestep, A/, after Young and Beven (1994) whereby 

i{i)=Ci„^{iy{t-At) (5.18) 

and C and P are the parameters, such that 0 < C < 1 and 0<P<\. 

The parameters of the loss models were fitted using observed total rainfall and 

streamflow event data as explained in section 5.3. Each model was tested on a set of 

storm events for a sample catchment in order to select a single loss model for use with a 

broader range of catchments (re. section 5.4.2). 

5,3 Calibration 

5.3.1 Genetic Algorithm 

The principles of the genetic algorithm (GA) and its suitability for the calibration of 

rainfall-streamflow models have been summarised in section 2.6.1. In the GA an initial 

population of randomly selected sets of parameter values is allowed to "evolve" by 

applying reproduction, crossover and mutation operations on selected "individuals" of 
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the parent population (Goldberg 1989). Each individual is a single set of parameter 

values representing a unique model solution. The set of model parameters is encoded as 

a string of numerical values. Each model parameter can take values within a user-

defined range so that the search space is constrained (e.g. to avoid unrealistic values 

being generated). The GA is repeated for a number of generations or until an 

adequately fit individual is found. The fitness of each individual is a numerical measure 

comparing model prediction with observations. The reproduction operator ensures that 

the best individuals of each population are retained. The key user-defined components 

of the GA are: 

• the number of individuals in the population; 

• the number of generations performed by the GA; 

• the method of selecting individuals for reproduction, crossover and mutation; 

• the probability of undertaking crossover between selected individuals; 

• the probability of undertaking mutation on a selected individual; and 

• the fitness function. 

The population size and number of generations influence the extent of the search space 

during the GA run and are problem-specific. The selection techniques are based upon a 

probabilistic rule where the chance of a particular individual being selected is dependent 

on its fitness (e.g. proportional to the fitness as in a weighted "roulette wheel" 

simulation). A pseudorandom number generator is used in the implementation of the 

GA to pick values between 0 and I . In practice, tournament selection is often used 

where a group of individuals is sampled at random from the population and the best in 

the group is selected based on fitness (Goldberg 1989). This avoids the potential with 

the roulette wheel approach for repeated selection of the same individuals which can 
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lead to convergence to a local optimum. The probabilities of crossover and mutation 

determine whether selected individuals are crossed or mutated. The crossover involves 

randomly selecting portions of the strings representing 2 parent individuals and crossing 

them between the 2 parents. Typically 2 points of crossover performs better than a 

single point (Goldberg 1989). Mutation involves randomly selecting a portion of the 

string representing an individual and replacing the model parameter values with new 

values drawn uniformly from the range for each parameter. The crossover and mutation 

operators simulate the evolution of fitter individuals whilst attempting to avoid 

convergence to a local optimum. Determining suitable values for these GA control 

parameters (population size, number of generations, tournament size, crossover 

probability and mutation probability) is problem specific and requires initial trials on 

sample data for the problem. 

5.3.2 Fitness Function 

In order to measure the error between the observed and model predicted streamflow 

necessary for the GA calibration a fitness function was evaluated based on two 

objective functions. The first objective was the commonly-used root mean square error, 

RMSE given by 

^E=^^YJ^q^,^^-qXd)J (5.19) 

where qobs.i is the observed streamflow at time t, q^0) is the streamflow predicted by the 

model at time /, 6 is the set of model parameters, and is the number of streamflow 

values used in the calibration. 

To account for the limitations of the RMSE (re. section 2.6.3), a second objective 

function was proposed that would fit the observed hydrograph shape across the range of 
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flows. A novel approach was to compare the slopes (de Vos and Rientjes 2007; 

Borthwick et a!. 2008) of the observed and predicted hydrographs, expressed as the root 

mean square error of slope, RMSslope, given by 

R^^lope =j-~Y.{siope^,^^-slopeX0)f 

(5.20) 

where 

slop^=^^LZ3i^ (5.21) 

for 1 < t < N using a central difference approximation; and at the end points of the time 

series the slopes were estimated using forward and backward differences as follows: 

slopes (5.22) 

.lop^^^lZ^ (5.23) 
At 

where A/ is the timestep (hourly) and 9, is the streamflow at a particular time, /. 

In a previous study Borthwick et al. (2008) have tested the effect of the fitness ftinction 

based on RMSE and RMSslope using the conceptual daily rainfall-streamflow model, 

SIXPAR (Gupta 1982) which is a reduced parameter version of the Sacramento soil 

moisture accounting model, SAC-SN4A (Bumash et al. 1973). For comparison with 

Duan et aVs (1992) study the same 200 day synthetic daily series of precipitation and 

streamflow for a known set of parameter values was used. When used singly in a GA 

search, the RMSE and RMSslope objective fiinctions identified different optima but 

failed to find the global solution. However, when combined as a weighted sum, the 

region of the global solution was detected. 

To combine the influence of the two objective functions, therefore, a weighted average 

fitness measure was used given by: 
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Fitness = w^RMSE + w^RMS^i^^^ (5.24) 

where w\ and W2 are weightings such that W] + ^2 =1. 

In order to establish appropriate values of the GA control parameters and the fitness 

function weightings wi and W2 initial calibration tests, where the key parameters were 

varied in turn, were undertaken to f i t an initialised, single, fractional-order, time-lagged, 

linear reservoir with a non-linear rainfall filter to a sample observed catchment event. 

5.3.3 Model Parameter Space 

The problems of parameter interaction and sensitivity in the calibration of rainfall-

streamflow models have been reviewed in section 2.6. The parameter space is defined 

by the values of parameters giving rise to model solutions of acceptable fitness. The 

space was investigated for a sample catchment by using a set of parameters calibrated 

for an observed event to run the fractional-order linear reservoir model and predict the 

streamflow for other observed events (i.e. validation). In this way the performance of 

calibration sets based on different events can be compared with each other for a given 

catchment. This is important for the assessment of how well the proposed model fits 

the catchment. 

In addition, visualization of the parameter and fitness function spaces is valuable for 

identification of the robustness of the calibration process. In a previous study 

Borthwick ei al. (2008) have tested the use of clustering and visualization for the 

calibration of the conceptual daily rainfall-streamflow model, SIXPAR (Gupta 1982) 

using the interactive calibration-support system developed by Packham et al (2005). 

The system uses the GA and clustering techniques to visualize the optimization of 
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multidimensional models and to evaluate robust regions of the parameter spaces. The 

system includes the following features: 

• Rapid sampling of the feasible parameter and objective spaces by using short GA 

runs. The low number of generations avoids convergence onto a single optimum 

region, and the use of moderately high crossover and mutation rates, particularly i f 

duplicate solutions are generated, maintains diversity. 

• High dimensional visualization of the parameter and objective function spaces, 

including 2-D and 3-D views, and parallel coordinates to aid in identification of 

parameter interaction and model sensitivity to particular parameters. 

• A kernel density estimation algorithm (Silverman 1986) to identify clusters of 

solutions in either the parameter or objective function space, and display using 

colour intensity in proportion to fitness, A univariate kernel density estimate of 

each variable is made and the minima from each estimate are computed. The 

bounds of each cluster are thus identified in each variable. The first cluster 

displayed to the user is that containing the highest fitness fi-om the GA. 

• Interactive features so that the user can quickly zoom into subspaces and select 

regions for additional GA searches to generate further solutions or for the 

identification of clusters - either automatically or manually. A l l the solutions (i.e. 

high and low fitness) generated by the GA search are retained by the system. In this 

way the user has control over both how and where the investigation of the search 

space takes place, including regions outside of clusters of good solutions found by 

the GA. 

The parameter space for the initialised, single, fractional-order, time-lagged, linear 

reservoir model with a non-linear rainfall filter was visualised for a sample observed 
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flow event using the interactive calibration-support system developed by Packham et al 

(2005). Furthermore, the visualisation was undertaken for events exhibiting anomalous 

calibration behaviour. 

5.3.4 Nash-Sutcliffe Efficiency 

For presentation purposes and as a means of comparing the model performance against 

other published research the commonly used Nash-Sutcliffe efficiency, NSE (Nash and 

Sutcliffe 1970), was also evaluated using 

r N \ 

NSE = 1 - t=\ (5.25) 

where q^^^ is the average observed streamflow. 

5.4 Test Catchments 

5.4.1 Rainfall-RunofT Mode! Testing 

In order to assess the applicability of fractional order cascades to the traditional 

effective (net) rainfall to runoff (stormflow) modelling problem an initially relaxed (i.e. 

zero initial condition) cascade of fractional reservoirs was tested for the following 3 

conditions: 

1. the cascade of n equal-/C fractional linear reservoirs subject to a time lag, T\ 

2. the cascade of 2 unequal-A" fractional linear reservoirs (Cavallini's ansatz); and 

3. the cascade of n equal-AT Ist order linear reservoirs (the classical Nash cascade). 

A sample dataset of 22 rainfall-streamflow events recorded for the River Nenagh 

catchment, Ireland has been processed into effective rainfall and runoff by Bree (1978), 

and Mohan and Vijayalakshmi (2008) have successftiUy applied the GA to the 
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calibration of the classical Nash cascade for this dataset. This effective rainfall-runoff 

dataset was used to test the application of the initially-relaxed cascade of fractional 

order reservoirs. Bree's (1978) processing of the observed total rainfall and streamflow 

data is summarised below. 

The Nenagh catchment has an area of 295km^. Bree (1978) used the 3 hourly rainfall 

depth recorded by the single autographic rain gauge on the catchment for the mean areal 

rainfall. The 3 hourly streamflow discharges were obtained from the velocity-area 

gauging station at Clarianna. The 22 isolated flood flows comprised 19 winter and 3 

autumn events. The percentage runoff loss model of the UK Flood Studies Report 

(Natural Environment Research Council 1975a) was used to derive the effective rainfall 

from the observed values for each event, so that the volume of effective rainfall 

equalled the volume of runoff The runoff was obtained from the observed streamflow 

hydrograph by subtracting an assumed constant baseflow. For a given flow event, the 

baseflow value was taken as equal to the final observed streamflow from the recession 

hydrograph of the previous event (i.e. the streamflow at the start of the rising 

hydrograph for the current flood event). 

For the model simulafions the start fime (/ = 0) for each event was taken as that for the 

beginning of the effective rainfall hyetograph. 

5.4.2 Rainfall-streamflow Model Testing 

For the testing of the initialised, single, fracfional-order, time-lagged, linear reservoir 

for modelling the observed (total) rainfall-streamflow transformation a selection of 

flood events from 11 representative UK catchments was used. Catchments were chosen 

that covered a range of sizes (from 22km^ to 5 lOkm^). In addition, the events used were 
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those drawn from the Flood Event Archive (provided with the permission of the Centre 

for Ecology and Hydrology, UK) that were deemed reliable for use in previous 

published work (Institute of Hydrology 1999; Kjeldsen et a!. 2005). A summary of 

each catchment is given in Table 5.1. 

Gauge No. River and Catchment Area 

(km') 

AAR 

(mm) 

% Area 

Urbanised 

46005 East Dart at Believer 22.22 2096 0.00 

30004 Lymn at Partney Mi l l 60.11 685 1.00 

74001 Duddon at Duddon Hall 86.02 2265 0.00 

25005 Leven at Leven Bridge 194.54 726 LOO 

54004 Sowe at Stoneleigh 263.23 667 13.00 

37001 Roding at Redbridge 301.12 607 4.00 

66011 Conwy at Cwm Llanerch 339.62 2041 0.10 

28026 Anker at Polesworth 370.50 653 6.00 

7001 Findhom at Shenachie 415.87 1217 0.02 

57005 Taff at Pontypridd 451.88 1832 4.00 

72006 Lune at (Cirkby Lonsdale 509.98 1652 0.10 

Table 5.1 Summary catchment properties 

AAR is Average annual rainfall. 

Full details of each catchment and river gauging station is available from HiFlows 

(Environment Agency 2009). 

The UK Flood Event Archive comprises catchment average rainfall profiles (CARPs) 

and associated hourly streamflow data for isolated flood events used in the production 

of the Flood Studies Report (Natural Environment Research Council i975a) and Flood 

Estimation Handbook (Institute of Hydrology 1999). The CARPs were derived from 

observed hourly point rainfall from autographic gauges on each catchment. The CARPs 

for events up to the end of 1975 were calculated using a weighted average of the 
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individual gauge observations based on the reciprocal of the distance from the centroid 

of the catchment (Natural Environment Research Council 1975b). For events from 

1976, the CARPs were calculated using an area-weighted average based on a 

development of the Thiessen polygon approach (Diskin 1970) where a rectangular mesh 

was used to subdivide the catchment. The mesh space closest to a given gauge was 

used to estimate the proportion of the total catchment area associated with the gauge 

(Jones 1983; Institute of Hydrology 1999). In both techniques used in creating the 

CARPs for the Flood Event Archive where more than one autographic gauge was 

available the averaging involved adjusting the time origin of the observed point 

hyetographs so that the centroids were matched. This required selecting events where 

the timing of the centroids was close to avoid averaging very different profiles. This 

implies that each storm event included in the archive was reasonably stationary over the 

duration of the event. 

The streamflow hydrographs in the Flood Event Archive were derived from the 

observed hourly stages fi-om river gauges using the associated rating curve for the 

gauge. The flood events were selected on the basis of having a significant peak flow 

and so that the streamflow hydrographs were separated by a reasonably well defined 

recession (before and after the event). 

For the model simulations the start time (/ = 0) for each event was taken as that for the 

beginning of the rainfall hyetograph (CARP). The initial condition, qo, required for the 

evaluation of the fi-ee response term, equation (4.80), of the fractional order reservoir 

model was taken as the observed streamflow at / = 0. This initial condition is the 

constant initialisation function implicit in the Caputo fractional derivative which is 
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assumed to represent the mixing effect of "old" (stored) water and "new" water 

observed in streamflow chemistry (re, section 4.4.1). 

The influence of the selection of the rainfall loss model on the performance of the 

fractional order reservoir system was investigated by applying the ^index, PR and non­

linear filter approaches in turn on the observed rain storm events for the East Dart 

catchment at Believer (river gauge no. 46005) and assessing the fit of the predicted and 

observed streamflow. 
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Chapter 6 Results 
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6.1 Rainfall-RunofT Model Results for River Nenagh 

The summary results for the GA fitting of the parameters of an initially relaxed (i.e. 

zero initial condition) cascade of n equal-A" fractional linear reservoirs subject to a time 

lag, T to Breeds (1978) pre-processed effective rainfall-runoff dataset for the River 

Nenagh (re. section 5.4.1) are shown in Table 6.1. A" and Tare presented in hours. 

Event K n a T Fitness NSE 

1 7.898 1.123 0.990 0.569 8.688 0.027 0.953 

2 4.309 1.466 0.999 0.836 6.308 0.015 0.988 

3 3.387 1.289 0.820 0.969 3.505 0.035 0.923 

4 4.083 1.572 0.908 0.917 5.639 0.081 0.839 

5 3.071 1.106 0.701 1.603 2.429 0.030 0.876 

6 4.219 1.205 0.818 1.668 3.912 0.031 0.953 

7 7.538 1.108 0.993 1.817 8.235 0.028 0.943 

8 5.155 1.327 0.991 0.317 6.740 0.015 0.990 

9 3.986 1.041 0.878 1.379 3.505 0.014 0.991 

10 1.954 2.232 0.846 0.305 3.934 0.014 0.988 

11 2.215 1.357 0.700 1.078 2.368 0.031 0.937 

12 2.631 1.531 0.918 0.537 3.721 0.067 0.970 

13 2.900 1.578 0.842 1.013 3.868 0.034 0.976 

14 2.715 1.594 0.834 0.950 3.667 0.020 0.988 

15 3.468 1.746 0.827 0.815 4.883 0.024 0.943 

16 4.130 1.409 0.910 0.915 5.122 0.018 0.956 

17 2.044 1.532 0.701 0.744 2.529 0.034 0.921 

18 1.372 1.711 0.837 1.556 2.230 0.069 0.924 

19 2.879 1.434 0.833 1.762 3.460 0.033 0.979 

20 1.616 3.321 0.950 0.445 5.239 0.049 0.973 

21 4.755 1.075 0.964 1.617 4.833 0.049 0.991 

22 5.611 1.051 0.968 0.738 5.581 0.019 0.990 

Table 6,1 R. Nenagh results for cascade of time-lagged equal fractional reservoirs 
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The following Figures 6.1 and 6.2 show the predicted and observed runoff hydrographs 

together with the effective event rainfall hyetograph for the best and worst cases for the 

River Nenagh associated with Table 6.1. A ful l set of results plots is available in 

Appendix A. 

Cfcserved Streamflow 

Predicted Streamflow 

Rainfall 

Tlinf (h) 

Figure 6.1 Predicted and observed results for event 21 
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Observed SlreamHow 

FVcdicLedStrcamncw 

Rainfall 

Tnnr (li) 

Figure 6.2 Predicted and observed results for event 04 

The summary results for the GA fitting of the initially relaxed cascade of two unequal-/^ 

fractional linear reservoirs to the effective rainfall-runoff events on the River Nenagh 

are shown in Table 6.2. 
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Event a Fitness NSE 

1 1.012 8.278 0.997 9.238 0.028 0.950 

2 4.044 3.107 1.000 7.151 0.021 0.973 

3 4.467 1.201 0.939 5.265 0.038 0.904 

4 2.586 5.109 0.972 7.399 0.082 0.833 

5 1.486 4.063 0.891 4.910 0.048 0.755 

6 3.722 2.929 1.000 6.651 0.073 0.792 

7 5.911 3.532 0.997 9.398 0.036 0.907 

8 2.126 4.747 0.944 6.389 0.015 0.990 

9 1.305 3.589 0.999 4.889 0.029 0.953 

10 4.268 1.573 0.999 5.834 0.020 0.974 

11 4.166 1.002 0.957 4.920 0.055 0.859 

12 1.595 3.315 0.986 4.844 0.079 0.955 

13 3.808 2.262 1.000 6.070 0.063 0.915 

14 2.084 3.884 0.992 5.914 0.044 0.943 

15 5.589 2.249 0.989 7.713 0.032 0.932 

16 4.981 2.122 0.995 7.055 0.022 0.931 

17 2.618 1.563 0.875 3.799 0.051 0.852 

18 2.832 2.974 1.000 5.806 0.147 0.735 

19 3.261 3.698 0.998 6.942 0.091 0.856 

20 4.078 4.169 0.999 8.235 0.153 0.746 

21 2.917 3.208 1.000 6.125 0.124 0.937 

22 1.483 4.498 0.927 5.471 0.024 0.984 

Table 6.2 R. Nenagh results for cascade of 2 unequal fractional reservoirs 

The following Figures 6.3 and 6.4 show the predicted and observed runoff hydrographs 

together with the effective event rainfall hyetograph for the best and worst cases for the 

River Nenagh associated with Table 6.2. A full set of results plots is available in 

Appendix B. 
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Figure 6.3 Predicted and observed results for event 08 
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Figure 6.4 Predicted and observed results for event 18 
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For comparison with Table 6.1 and Table 6.2, the summary results for the GA fitting of 

the classical Nash cascade of n initially relaxed, equa\-K order linear reservoirs to the 

effective rainfall-runoff events on the River Nenagh are shown in Table 6.3. The nK 

values can be compared with the nK° values in Table 6.1 and the + K2 values in 

Table 6.2. 

Event K n nK Fitness NSE 

1 6.087 1.445 8.797 0.034 0.931 

2 2.810 2.427 6.820 0.014 0.987 

3 4.115 1.419 5.839 0.040 0.888 

4 3.997 1.901 7.597 0.083 0.821 

5 4.281 1,427 6.109 0.053 0.696 

6 2.445 2.487 6.079 0.070 0.792 

7 4.612 2.018 9.308 0.036 0.905 

8 4.629 1.534 7.103 0.016 0.988 

9 2.255 2.026 4.569 0.031 0.939 

10 2.838 1.950 5.534 0.022 0.963 

11 3.103 1.620 5.026 0.062 0.809 

12 2.517 1.894 4.768 0.081 0.950 

13 2.449 2.322 5.687 0.060 0.908 

14 2.367 2.299 5.442 0.042 0.934 

15 4.042. 1.907 7.706 0.033 0.927 

16 3.571 1.924 6.870 0.023 0.923 

17 2.881 1.546 4.455 0.059 0.774 

18 • 1.657 3.133 5.190 0.124 0.806 

19 1.855 3.281 6.085 0.070 0.908 

20 1.366 4.875 6.657 0.071 0.937 

21 2.221 2.572 5.713 0.107 0.944 

22 4.303 1.432 6.161 0.026 0.982 

Table 6.3 R. Nenagh results for Nash cascade of n equal I'* order reservoirs 
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6.2 Initialised Fractional Order Linear Reservoir Results 

6.2.1 Loss Model Testing 

The results for the GA fitting of the parameters of an initialised, single, fractional-order, 

time-lagged, linear reservoir to the Flood Event Archive events subject to the use of the 

^index, percentage runoff (PR) and non-linear rainfall filter (RF) approaches in turn on 

the observed rain storm events for a sample catchment, the East Dart at Believer (river 

gauge no. 46005) are shown in Tables 6.4 - 6.6. The K° values for each event are 

calculated for dimensional consistency. The observed total event rainfall (RT) in mm, 

observed peak streamflow (g/>) in mVs and initial soil moisture deficit (SMD, supplied 

to the Flood Event Archive by the UK Meteorological Office from the nearest climate 

station records) in mm, for each event are also presented. K and Tare stated in hours, ^ 

is in mm. 
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o 

Event Date RT Qp SMD K a T NSE 

1287 13-NOV-64 38.1 24.81 0 4.609 0.795 0.875 0.288 3.371 0.839 

1289 28-NOV-65 39.9 38.15 0 2.920 0.753 1.997 0.913 2.242 0.969 

1292 28-Dec-66 48.3 31.69 0 3.500 0.700 3.625 0.163 2.405 0.724 

1297 21-Dec-68 34.4 30.38 0 2.250 0.893 3.317 1.406 2.063 0.915 

1298 13-Dec-69 49.2 31.43 0 1.563 0.968 2.665 1.575 1.540 0.879 

1299 08-Sep-70 32.6 38.34 0 1.500 0.820 0.906 0.415 1.394 0.936 

1300 12-NOV-72 44.6 8.66 0 4.828 1.000 0.564 3.594 4.828 0.990 

1301 04-Aug-73 109.9 50.79 50.8 1.875 0.706 2.910 0.226 1.559 0.878 

1302 13-Sep-75 49.2 25.69 28.2 4.250 0.583 2.833 1.078 2.325 0.905 

1303 lO-Nov-74 48.5 43.92 0 2.281 0.885 2.250 0.563 2.075 0.966 

1304 03-Aug-74 43.6 13.28 28.7 38.500 0.362 3.941 1.000 3.743 0.917 

4351 12-Feb-76 51.4 23.35 0 2.582 0.725 2.390 0.088 1.989 0.899 

4352 05-Oct-76 56.6 17.38 0.2 7.375 0.983 1.476 1.000 7.129 0.859 

4353 14-Oct-76 104.1 17.73 0 7.688 1.000 0.771 1.566 7.683 0.903 

Table 6.4 Catchment 46005 results for single fractional time-lagged reservoir using a ^index loss model 



o 
00 

Event Date Rj Qp SMD K a T PR NSE 

1287 13-NOV-64 38.1 24,81 0 4.328 0.688 1.338 91.968 2.738 0.822 

1289 28-NOV-65 39.9 38.15 0 2.000 0,895 2.000 68.571 1.859 0.932 

1292 28-Dec-66 48.3 31.69 0 60,250 0.163 4.964 100.000 1.946 0.524 

1297 21-Dec-68 34,4 30.38 0 1.750 0.897 3.500 76.812 1.652 0.922 

1298 13-Dec-69 49.2 31.43 0 1.941 0.538 3.500 82.813 1.428 0.782 

1299 08-Sep-70 32.6 38.34 0 1.719 0.763 0.891 100.000 1.512 0.924 

1300 12-NOV-72 44.6 8.66 0 2.500 1.000 1.146 23,462 2.500 0.947 

1301 04-Aug-73 109.9 50.79 50.8 2.000 0.625 3.000 98.112 1.542 0.867 

1302 l3-Sep-75 49.2 25.69 28.2 8.250 0.271 3.819 93.750 1.771 0.889 

1303 lO-Nov-74 48.5 43.92 0 2.000 0.799 2.363 96.875 1.740 0,959 

1304 03-Aug-74 43.6 13.28 28.7 28.500 0.390 3.938 71.875 3.696 0.894 

4351 l2-Feb-76 51.4 23.35 0 46.500 0.163 2.944 100.000 1.866 0.608 

4352 05-Oct-76 56.6 17.38 0.2 58.000 0,350 1.986 100,000 4.142 0.654 

4353 l4-Oct-76 104.1 17.73 0 6.817 0.839 1.500 63,281 5.005 0.887 

Table 6.5 Catchment 46005 results for single fractional time-lagged reservoir using a PR loss model 



o 

Event Date Rf Qp SMD K a T C P NSE 

1287 13-NOV-64 38.1 24.81 0 10.390 0.597 0.429 0.873 0.485 4.049 0.964 

1289 28-NOV-65 39.9 38.15 0 23.381 0.453 1.669 0.965 0.519 4.173 0.977 

1292 28-Dec-66 48.3 31.69 0 31.577 0.109 3.778 0.692 0.890 1.456 0.832 

1297 21-Dec-68 34.4 30.38 0 5.911 0.646 2.607 0.852 0.405 3.154 0.971 

1298 13-Dec-69 49.2 31.43 0 25.790 0.519 1.249 0.929 0.611 5.402 0.954 

1299 08-Sep-70 32.6 38.34 0 2.903 0.343 1.306 0.960 0.179 1.441 0.895 

1300 12-NOV-72 44.6 8.66 0 36.627 0.341 1.528 0.569 0.364 3.408 0.974 

1301 04-Aug-73 109.9 50.79 50.8 42.464 0.261 2.637 0.961 0.529 2.660 0.878 

1302 13-Sep-75 49.2 25.69 28.2 49.098 0.254 2.775 0.911 0.436 2.693 0.960 

1303 lO-Nov-74 48.5 43.92 0 5.270 0.548 1.972 0.866 0.333 2.487 0.991 

1304 03-Aug-74 43.6 13.28 28.7 40.966 0.488 2.365 0.817 0.432 6.126 0.948 

4351 12-Feb-76 51.4 23.35 0 4.727 0.699 0.783 0.627 0.588 2.962 0.949 

4352 05-Oct-76 56.6 17.38 0.2 22.495 0.586 1.223 0.890 0.558 6.202 0.919 

4353 14-Oct-76 104.1 17.73 0 49.574 0.452 1.710 0.892 0.395 5.827 0.936 

Table 6.6 Catchment 46005 results for single fractional time-lagged reservoir using a R F loss model 



The following Figures 6.5 - 6.18 show the best fitting predicted streamflow 

hydrographs using the different loss models together with the observed total rainfall 

hyetograph and observed hydrograph for each event associated with Tables 6.4 - 6.6. 

The following abbreviations are used on the Figures: 

Phi-index - ^index, equation (5.16) 

PR - percentage runoff, equation (5.17) 

RF - non-linear rainfall filter, equation (5.18) 
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Figure 6.5 Predicted and observed results for event 1287 
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Figure 6.6 Predicted and observed results for event 1289 
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Figure 6.7 Predicted and observed results for event 1292 
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Figure 6.8 Predicted and observed results for event 1297 
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Figure 6.9 Predicted and observed results for event 1298 
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Figure 6.10 Predicted and observed results for event 1299 
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Figure 6.12 Predicted and observed results for event 1301 
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Figure 6.14 Predicted and observed results for event 1303 
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Figure 6.16 Predicted and observed results for event 4351 
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Figure 6.18 Predicted and observed results for event 4353 
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From Tables 6.4 - 6.6 and Figures 6.5 - 6.18 the non-linear rainfall filter (RF) model 

(equation (5.18)) was found to outperform the ^index and PR. Consequently the RF 

loss model was selected for use in the subsequent event simulations for the Flood Event 

Archive catchments (re. section 6.2.3). 

6.2.2 GA Parameter Selection 

The results for different GA control parameters used for fitting an initialised, single, 

fi-actional-order, time-lagged, linear reservoir with a non-linear rainfall filter to a sample 

observed rain storm event (no. 1303, lO-Nov-74) for the East Dart at Believer (river 

gauge no. 46005) are shown in Table 6.7 (and recall Figure 6.14 for a plot of the 

observed streamflow hydrograph and total rainfall hyetograph). K and T are stated in 

hours. 

The abbreviations for the GA control parameters used in Table 6.7 are: 

Pop. - population size 

Gen. - number of generations 

Toum. - size of sample group in tournament selection 

Cross. - probability of selection for crossover operator 

Mut. - probability of selection for mutation operator 

The weightings for the fitness function, equation (5.24) are: 

u'l - weighting applied to RMSE 

wh - weighting applied to RMSshpe 

such that n'l + u'2 =1. 
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GA Control Parameters Fitness Weighting Rainfall-Streamf] ow Model Parameters Fitted by GA 
Pop. Gen. Tourn. Cross. Mut. K a T C P IT NSE 

25 50 4 0.6 0.2 0.6 0.4 1.270 0.579 2.779 0.980 0.020 1.149 0.960 
75 50 4 0.6 0.2 0.6 0.4 62.461 0.129 2.991 0.985 0.395 1.707 0.919 

100 50 4 0.6 0.2 0.6 0.4 4.446 0.581 1.911 0.784 0.375 2.381 0.992 
50 25 4 0.6 0.2 0.6 0.4 131.415 0.185 1.844 0.820 0.840 2.465 0.930 
50 75 4 0.6 0.2 0.6 0.4 5.561 0.387 2.713 0.991 0.272 1.942 0.981 
50 100 4 0.6 0.2 0.6 0.4 4.169 0.464 2.527 0.919 0.260 1.940 0.982 
50 50 2 0.6 0.2 0.6 0.4 28.538 0.364 1.833 0.935 0.595 3.392 0.982 
50 50 3 0.6 0.2 0.6 0.4 7.096 0.477 2.278 0.989 0.289 2.545 0.982 
50 50 5 0.6 0.2 0.6 0.4 157.432 0.179 1.714 0.824 0.854 2.472 0.926 
50 50 6 0.6 0.2 0.6 0.4 9.702 0.397 2.456 0.993 0.346 2.464 0.980 
50 50 4 0.4 0.2 0.6 0.4 5.880 0.538 1.863 0.812 0.414 2.596 0.992 
50 50 4 0.5 0.2 0.6 0.4 8.884 0.403 2.534 0.984 0.344 2.409 0.979 
50 50 4 0.7 0.2 0.6 0.4 22.413 0.271 2.720 0.987 0.426 2.324 0.960 
50 50 4 0.6 0.05 0.6 0.4 3.649 0.656 1.941 0.850 0.254 2.337 0.987 
50 50 4 0.6 0.10 0.6 0.4 19.084 0.338 2.102 0.903 0.497 2.706 0.954 
50 50 4 0.6 0.25 0.6 0.4 32.933 0.333 1.918 0.946 0.588 3.197 0.982 
50 50 4 0.6 0.30 0.6 0.4 7.094 0.467 2.275 0.947 0.315 2.495 0.981 
50 50 4 0.6 0.2 I 0 9.232 0.392 2.472 0.992 0.333 2.389 0.980 
50 50 4 0.6 0.2 0.5 0.5 10.937 0.447 1.940 0.917 0.442 2.911 0.994 
50 50 4 0.6 0.2 0.4 0.6 9.076 0.241 1.797 0.657 0.760 1.701 0.931 
50 50 4 0.6 0.2 0 1 73.411 0.188 2.290 0.803 0.579 2.245 0.827 
50 50 4 0.6 0.2 0.6 0.4 5.270 0.548 1.972 0.866 0.333 2.487 0.991 

Table 6.7 Influence of GA control parameters on fit for sample event 1303 



From the results of the tests shown in Table 6.7, the following GA control parameters 

(Table 6.8) were selected as appropriate for producing effective parameter fitting for 

houriy flood event data together with computational efficiency (i.e. fewer function 

evaluations for a population of 50 rather than 100 individuals). 

GA control parameter Value used in Model Calibration 

Population size 50 

Number of generations 50 

Selection method Tournament size 4 

Crossover probability 0.6 

Mutation probability 0.2 

Fitness weight W] 0.6 

Fitness weight \V2 0.2 

Table 6.8 GA control parameters used for model calibration 

6.2.3 Rainfall-Streamflow Model Results for the Flood Event Archive Data 

The summary results for the GA fitting of the parameters of an initialised, single, 

fractional-order, time-lagged, linear reservoir to a range of the Flood Event Archive 

catchments, including the non-linear rainfall filter model (equation (5.18)) parameters 

(re. section 5.4.2 and 6.2.1), are shown in tables 6.9 - 6.19 (one for each catchment). 

The results widi and without the rainfall loss model are listed for comparison. The K° 

values for each event are calculated for dimensional consistency. The observed total 

event rainfall (RT) in mm, observed peak streamflow (Qp) in m"*/s and initial soil 

moisture deficit (SMD, supplied to the Flood Event Archive by the UK Meteorological 

Office from the nearest climate station records) in mm, for each event are also 

presented. K and Tare stated in hours. 
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Following each table are 4 figures showing the predicted and observed streamflow 

hydrographs together with the total event rainfall hyetograph for the best and worst 

cases for each catchment for the two models. Full sets of results plots are available in 

Appendices C and D. A summary of the composite K" values for each catchment is 

given in Table 6.20. 
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to 

No loss model With non-linear Alter loss model 

Event Date RT Qp SMD K a T IC NSE K a T C P IC NSE 

1287 13-NOV-64 38.1 24.81 0 6.086 0.724 0.899 3.697 0.811 10.390 0.597 0.429 0.873 0.485 4.045 0.964 

1289 28-NOV-65 39.9 38.15 0 4.432 0.592 2.137 2.414 0.938 23.381 0.453 1.669 0.965 0.519 4.170 0.977 

1292 28-Dec-66 48.3 31.69 0 2.781 0.569 3.856 1.790 0.734 31.577 0.109 3.778 0.692 0.890 1.457 0.832 

1297 21-Dec-68 34.4 30.38 0 2.432 0.495 3.906 1.553 0.913 5.911 0.646 2.607 0.852 0.405 3.151 0.971 

1298 13-Dec-69 49.2 31.43 0 4.227 0.451 2.974 1.916 0.787 25.790 0.519 1.249 0.929 0.611 5.402 0.954 

1299 08-Sep-70 32.6 38.34 0 1.897 0.795 0.872 1.664 0.926 2.903 0.343 1.306 0.960 0.179 1.441 0.895 

1300 12-NOV-72 44.6 8.66 0 681.821 0.321 1.670 8.121 0.863 36.627 0.341 1.528 0.569 0.364 3.414 0.974 

1301 04-Aug-73 109.9 50.79 50.8 3.719 0.542 3.284 2.038 0.832 42.464 0.261 2.637 0.961 0.529 2.660 0.878 

1302 13-Sep-75 49.2 25.69 28.2 12.021 0.223 3.948 1.741 0.895 49.098 0.254 2.775 0.911 0.436 2.689 0.960 

1303 lO-Nov-74 48.5 43.92 0 1.590 0.677 2.622 1.369 0.960 5.270 0.548 1.972 0.866 0.333 2.486 0.991 

1304 03-Aug-74 43.6 13.28 28.7 176.706 0.319 3.930 5.210 0.889 40.966 0.488 2.365 0.817 0.432 6.122 0.948 

4351 12-Feb-76 51.4 23.35 0 3.541 0.758 2.326 2.608 0.908 4.727 0.699 0.783 0.627 0.588 2.962 0.949 

4352 05-Oct-76 56.6 17.38 0.2 20.074 0.587 1.882 5.816 0.749 22.495 0.586 1.223 0.890 0.558 6.199 0.919 

4353 14-Oct-76 104.1 17.73 0 28.792 0.473 1.856 4.900 0.858 49.574 0.452 1.710 0.892 0.395 5.838 0.936 

Table 6.9 Catchment 46005 results for single fractional time-lagged reservoir 
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Figure 6.20 Results for event 1303 - without loss model 
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Figure 6.21 Results for event 1292 - with non-linear filter loss model 
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Figure 6.22 Results for event 1303 - with non-linear filter loss model 
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No loss model With non-linear filter loss model 

Event Date RT Qp SMD K a T NSE K a T C P NSE 

492 05-NOV-67 15.2 3.72 9.9 682.461 0.464 8.808 20.654 0.891 95.986 0.568 8.628 0.679 0.064 13.363 0.945 

495 15-Sep-68 30.1 6.58 2.8 634.500 0.424 6.855 15.425 0.923 32.289 0.860 3.199 0.802 0.419 19.851 0.956 

496 Ol-Nov-68 48.7 10.17 0 495.552 0.429 7.855 14.328 0.949 62.036 0.610 6.699 0.699 0.224 12.403 0.978 

3874 06-Mar-82 21.4 4.73 18.9 499.049 0.514 6.779 24.369 0.965 126.551 0.651 5.626 0.989 0.223 23.365 0.983 

3877 25-Jun-82 23.2 5.86 46.8 286.622 0.644 3.782 38.239 0.930 145.446 0.698 3.531 0.975 0.177 32.327 0.934 

3878 13-NOV-82 26.7 4.32 5.3 485.591 0.536 5.791 27.532 0.929 96.857 0.615 4.677 0.726 0.121 16.652 0.879 

3880 Ol-May-83 21.2 5.02 4.1 634.246 0.466 5.755 20.223 0.849 52.188 0.726 4.592 0.644 0.119 17.659 0.936 

3881 31-Jul-83 36 1.74 101.9 699.981 0.999 2.723 695.410 -1.807 172.950 0.681 3.986 0.615 0.519 33.421 0.936 

3882 26-NOV-83 29.7 3.09 85.5 2998.022 0.490 5.708 50.542 0.943 49.333 0.666 5.312 0.230 0.002 13.416 0.991 

3884 02-Aug-84 53 5.19 101.3 699.715 0.930 1.984 442.361 0.087 145.283 0.583 2.376 0.689 0.690 18.221 0.980 

3890 29-Dec-86 29.5 7.61 4.9 351.564 0.455 9.883 14.402 0.899 26.351 0.910 5.512 0.792 0.448 19.630 0.971 

3893 14-Oct-87 30.3 7.25 5.2 274.425 0.486 5.797 15.313 0.845 20.237 0.860 4.374 0.551 0.148 13.283 0.912 

4166 13-DCC-79 27.6 8.41 9.5 255.538 0.511 4.766 16.991 0.890 41.462 0.684 4.418 0.733 0.156 12.778 0.931 

Table 6.10 Catchment 30004 results for single fractional time-lagged reservoir 
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Figure 6.23 Results for event 3884 - without loss model 
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Figure 6.24 Results for event 3893 - without loss model 
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Figure 6.26 Results for event 3893 - with non-linear filter loss model 
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No loss model With non-linear filter loss model 

Event Date Rf OF SMD K a T NSE K a T C P IC NSE 

2360 Ol-Jul-68 87.5 90.74 15.8 32.866 0.631 1.732 9.059 0.430 28.719 0.655 0.026 0.956 0.625 9.018 0.603 

2361 19-Sep-68 77.4 47.68 6.3 30.507 0.871 1.539 19.630 0.827 22.288 0.965 1.263 0.821 0.065 19.993 0.847 
2362 09-Oct-68 34.6 47.72 1.8 49.757 0.527 2.056 7.839 0.984 20.027 0.599 1.879 0.755 0.077 6.021 0.993 

2363 23-NOV-68 30.6 48.79 0 18.873 0.535 3.947 4.815 0.972 10.875 0.661 3.554 0.825 0.154 4.843 0.967 

2364 19-Dec-68 45.1 59.77 0 9.905 0.732 1.647 5.358 0.862 23.075 0.636 0.516 0.993 0.539 7.361 0.962 

2365 20.Jan-69 85.6 119.12 0.2 5.179 0.731 2.561 3.327 0.896 12.667 0.682 1.654 0.753 0.517 5.650 0.887 

2366 13-Dec-69 60.1 102.78 0.2 4.663 0.823 1.519 3.551 0.946 10.782 0.559 1.410 0.985 0.327 3.778 0.980 

2367 18-Jan-72 55.7 154.82 0 2.423 0.592 3.754 1.689 0.849 23.114 0.334 2.820 0.913 0.505 2.855 0.926 

Table 6.11 Catchment 74001 results for single fractional time-lagged reservoir 
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Figure 6.28 Results for event 2362 - without loss model 
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Figure 6.29 Results for event 2360 - with non-linear filter loss model 
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Figure 6.30 Results for event 2362 - with non-linear filter loss model 
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No loss model With non-linear filter loss model 

Event Date RT Qp SMD K a r IT NSE K a T C P fC NSE 

3989 05-Aug-78 49.9 36.24 60.3 98.654 0.645 6.972 19.329 0.854 38.188 0.801 9.961 0.776 0.086 18.498 0.911 

3990 07-DCC-78 19.1 17.16 55.9 86.037 0.663 7.630 19.173 0.894 54.145 0.731 7.643 0.918 0.081 18.503 0.916 

3994 19-May-79 35.3 43.83 22.2 79.090 0.563 5.650 11.712 0.890 18.069 0.940 3.577 0.668 0.202 15.189 0.956 

3995 29-May-79 28.3 57.52 3 38.976 0.755 2.693 15.887 0.844 24.768 0.999 0.289 0.996 0.437 24.689 0.939 

3996 14-NOV-79 41.9 32.01 42.2 216.602 0.473 10.868 12.728 0.938 30.832 0.812 7.698 0.651 0.193 16.183 0.982 

3997 ll-Mar-80 13.3 17.49 0 75.121 0.599 8.787 13.292 0.958 39.129 0.707 8.613 0.995 0.128 13.363 0.975 

3998 17-Mar-80 16.8 19.73 0.7 37.126 0.773 7.711 16.344 0.976 22.432 0.977 6.338 0.961 0.162 20.883 0.989 

3999 29-NOV-81 14.7 21.72 49.5 64.094 0.628 9.604 13.636 0.962 36.138 0.709 9.501 0.884 0.064 12.723 0.979 

4002 26-Apr-83 42.6 52.12 3.2 27.888 0.608 10.684 7.565 0.971 20.697 0.807 8.369 0.847 0.026 11.533 0.978 

4004 08-Dec-83 41.4 43.32 49.1 138.155 0.473 10.811 10.289 0.921 36.775 0.933 4.689 0.983 0.483 28.884 0.980 

4018 05-Jan-88 13 18.3 0 70.684 0.698 6.630 19.536 0.823 44.471 0.770 6.611 0.996 0.127 18.579 0.862 

4393 03-Dec-81 10.7 15.16 42.1 69.360 0.688 8.713 18.479 0.969 48.146 0.751 8.660 0.996 0.075 18.349 0.977 

4395 20-Apr-83 16.6 32.77 8.5 74.322 0.598 7.611 13.150 0.901 38.540 0.738 6.662 0,997 0.205 14.805 0.946 

4399 Ol-Jun-83 15.2 21.51 7.1 68.576 0.731 6.530 21.991 0.911 29.351 0.905 5.623 0.994 0.279 21.302 0.975 

4401 03-Feb-88 16.5 21.36 0.2 51.520 0.875 6.555 31.476 0.900 25.220 0.990 6.460 0.858 0.183 24.419 0.940 

Table 6,12 Catchment 25005 results for single fractional time-lagged reservoir 
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Figure 6.32 Results for event 3998 - without loss model 
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Figure 6.34 Results for event 3998 - with non-linear filter loss model 
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No loss model With non-linear filter loss model 

Event Date RT Qp SMD K a T IC NSE K a T C P NSE 

1559 24-Jan-60 38.4 45.78 0 85.907 0.793 6.545 34.173 0.891 55.171 0.922 4.523 0.984 0.249 40.351 0.931 

1560 27-Jan-60 32.1 38.09 0 62.750 0.922 2.365 45.436 0.868 41.305 0.999 1.431 0.975 0.246 41.152 0.923 

1561 17-NOV-60 17.8 22.4 0 64.218 1.000 3.436 64.218 0.877 60.787 0.997 3.491 0.995 0.008 60.043 0.864 

1562 03-Dec-60 34.7 45.36 0 58.237 0.774 8.616 23.241 0.915 29.858 0.997 6.580 0.786 0.126 29.555 0.948 

1563 09-Dec-65 23.8 29.83 0 66.613 0.842 5.471 34.311 0.936 45.722 0.990 3.629 1.000 0.157 44.007 0.947 

1564 22-Dec-65 20.1 23.65 0 64.141 0.956 4.128 53.410 0.971 49.081 0.994 3.701 0.980 0.088 47.948 0.973 

1567 G9-Dec-66 15.7 24.36 0 67.191 0.980 2.363 61.768 0.908 56.032 0.998 2.307 0.952 0.046 55.583 0.921 

1568 08-Mar-67 23.8 22.88 0 94.546 0.854 2.330 48.663 0.913 54.874 0.981 1.348 0.966 0.184 50.853 0.958 

1570 12-Mar-69 29.2 35.85 5 58.489 0.795 6.616 25.399 0.944 27.049 0.998 5.574 0.693 0.018 26.871 0.974 

1571 05-May-69 36.2 34.19 20.4 109.201 0.810 4.609 44.768 0.807 64.141 0.942 2.558 0.861 0.146 50.387 0.841 

1572 03-Aug-69 31.1 20.35 74.2 478.255 0.686 1.491 68.904 0.855 68.056 0.883 0.262 0.662 0.327 41.536 0.906 

Table 6.13 Catchment 54004 results for single fractional time-lagged reservoir 
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Figure 6.36 Results for event 1570 - without loss model 
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Figure 6.37 Results for event 1571 - with non-linear filter loss model 
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Figure 6.38 Results for event 1570 - with non-linear filter loss model 
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No loss model With non-linear filter loss model 

Event Date Qp SMD K a T IC NSE K a T C P IT NSE 

650 03-DCC-60 22.9 37.25 0 63.655 0.823 19.668 30.518 0.700 61.145 0.995 9.860 0.964 0.020 59.900 0.592 

651 27-Feb-61 21.1 20.12 0 100.021 0.985 4.385 93.345 0.744 75.626 0.999 4.499 0.959 0.081 75.300 0.769 

653 08-Mar-63 11.6 13.46 7.5 82.585 1.000 13.525 82.585 0.889 77.089 0.994 9.896 0.975 0.038 75.105 0.753 

656 02-Sep-65 37.8 8.21 84.4 637.367 0.952 0.757 467.497 0.813 145.634 0.995 0.173 0.391 0.115 142.052 0.785 

657 08-Dec-65 21.9 24.49 0.2 . 89.594 0.999 4.542 89.192 0.703 88.991 0.994 4.519 0.994 0.007 86.626 0.695 

658 18-Apr-66 27.8 23.12 3.1 101.791 0.927 5.580 72.635 0.748 61.865 0.999 5.485 0.944 0.131 61.610 0.791 

659 27-Feb-67 15.6 20.33 0 69.024 0.999 4.676 68.732 0.662 66.125 0.997 4.688 0.983 0.004 65.299 0.657 

- J 

Table 6.14 Catchment 37001 results for single fractional time-lagged reservoir 



ObsenredSlreamftow 

Predicted Streamflow 

Rainfall 

10 

20 

30 

40 

Figure 6.39 Results for event 656 - without loss model 
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Figure 6.41 Results for event 656 - with non-linear filter loss model 
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Figure 6.42 Results for event 650 - with non-linear filter loss model 
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No loss model With non-linear filter loss model 

Event Date Rj Qp SMD K a T NSE K a T C P IT NSE 

2072 06-JuI-64 71.6 236.74 44.4 289.574 0.321 4.859 6.169 0.907 121.104 0.401 3.746 0.780 0.456 6.845 0.962 

2073 12-NOV-64 41.2 241.45 0 15.891 0.524 4.660 4.260 0.960 16.567 0.648 3.592 0.870 0.313 6.167 0.984 

2074 Il-Dec-64 191.5 535.23 0 7.160 0.753 1.850 4.403 0.937 6.308 0.947 1.594 0.749 0.109 5.721 0.950 

2075 08-May-65 42.6 333.01 2 10.003 0.578 3.748 3.785 0.873 93.268 0.398 2.770 0.993 0.718 6.081 0.920 

2076 14-Sep-66 40.6 301.86 0 10.378 0.585 2.639 3.930 0.973 8.903 0.766 1.730 0.855 0.160 5.338 0.988 

2077 30-NOV-66 76.4 335.68 0 6.090 0.616 2.606 3.043 0.880 6.455 0.895 0.852 0.714 0.421 5.307 0.950 

2078 22-Feb-67 61.8 399.48 0 2.973 0.363 3.541 1.485 0.922 18.854 0.234 3.564 0.976 0.272 1.988 0.939 
2079 27-Feb-67 71.8 520.77 0 3.625 0.776 0.553 2.717 0.894 5.082 0.607 0.559 0.875 0.224 2.683 0.896 

2080 OI-Oct-67 56.8 442.82 0.3 4.580 0.569 2.485 2.377 0.968 24.839 0.498 1.807 0.996 0.365 4.952 0.938 

2081 16-Oct-67 71.4 396.79 0.2 6.510 0.968 1.348 6.131 0.974 19.383 0.659 0.875 0.960 0.436 7.054 0.986 

2082 22-Dec-67 57.9 376.91 0 6.220 0.873 1.513 4.931 0.966 6.940 0.828 1.589 0.968 0.056 4.973 0.962 

2083 I3-Jan-68 97.1 412.15 0.2 4.418 0.995 3.490 4.385 0.884 6.170 0.953 2.317 0.856 0.288 5.664 0.940 

2084 22-Mar-68 122.9 449.58 0 7.546 0.997 0.111 7.500 0.944 10.376 0.659 0.626 0.996 0.172 4.673 0.929 

Table 6.15 Catchment 66011 results for single fractional time-lagged reservoir 
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Figure 6.43 Results for event 2075 - without loss model 
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Figure 6.44 Results for event 2081 - without loss model 
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Figure 6.45 Results for event 2075 - with non-linear filter loss model 
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Figure 6.46 Results for event 2081 - with non-linear filter loss model 
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No loss model With non-linear filter loss model 

Event Date Rj QF SMD K a T IC NSE K a T C P IT NSE 

409 04-NOV-67 24.2 40.02 0 61.251 0.863 13.591 34.856 0.895 48.901 0.994 9.993 0.996 0.105 47,773 0.893 

410 lO-Jul-68 51.2 56.87 19.5 134.559 0.783 19.525 46.445 0.735 79.084 0.997 9.782 0.884 0.148 78.054 0.704 

411 Ol-Nov-68 26.1 43.99 0 88.606 0.783 17.590 33.486 0.676 56.744 0.999 9.942 0.998 0.172 56.515 0.696 

412 12-Mar-69 27.9 36 4.1 101.506 0.712 14.716 26.830 0.881 48.185 0.990 9.461 0.991 0.245 46.354 0.914 

413 05-May-69 36.3 56.63 12.9 108.992 0.720 12.680 29.304 0.782 42.841 0.999 9.513 0.979 0.409 42.680 0.884 

Table 6.16 Catchment 28026 results for single fractional time-lagged reservoir 
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Figure 6.48 Results for event 412 - without loss model 
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Figure 6.49 Results for event 411 - with non-linear filter loss model 
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Figure 6.50 Results for event 412 - with non-linear filter loss model 
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No loss model With non-linear filter loss model 

Event Date RT OF SMD K a T IC NSE K a T C P IC NSE 

3671 02-Jul-78 70.4 155.59 11 219.109 0.483 5.662 13.506 0.829 104.886 0.422 5.607 0.881 0.265 7.124 0.920 

3673 03-Oct-79 32.8 92.6 36.2 233.629 0.45 i 5.847 11.701 0.714 49.823 0.554 5.825 0.845 0.219 8.717 0.773 

3675 24-Jul-80 77.9 275.97 72.5 65.252 0.473 3.779 7.216 0.665 13.821 0.608 3.657 0.669 0.089 4.937 0.706 

3677 26-Oct-80 33.6 199.59 0 27.839 0.552 5.637 6.273 0.640 23.697 0.725 3.944 0.772 0.048 9.923 0.619 

3678 23-Aug-85 41.7 192.28 10.8 29.329 0.653 3.328 9.081 0.481 9.491 0.841 1.605 0.776 0.003 6.636 0.631 

3680 09-Jan-86 129.8 130.19 0 156.916 0.717 1.506 37.523 0.070 71.258 0.561 3.186 0.733 0.019 10.951 0.080 

3682 19-Jan-86 27.1 87.19 0 49.716 0.600 1.591 10.421 0.661 21.862 0.829 0.151 0.939 0.262 12.900 0.703 

3686 17-Jun-86 29.5 102.32 20 175.332 0.571 5.759 19.109 0.614 29.289 0.909 3.481 0.957 0.477 21.539 0.796 

3687 30-Jul-86 34.5 163.76 69 61.843 0.539 3.575 9.236 0.698 21.561 0.670 2.269 0.952 0.571 7.826 0.920 

3688 28-OCI-86 50.8 223.64 23.2 135.561 0.301 4.009 4.383 0.694 8.238 0.505 3.446 0.885 0.467 2.901 0.851 

3691 02-Dec-86 25.3 134.02 3.3 11.213 0.737 3.842 5.938 0.805 20.227 0.316 5.729 0.943 0.013 2.586 0.679 

3697 09-Jul-87 23.7 106.79 6.1 299.070 0.457 5.366 13.534 0.925 39.829 0.606 4.685 0.722 0.219 9.327 0.961 

3698 14-Mar-88 30.9 50.18 0 398.613 0.565 4.832 29.465 0.748 46.445 0.698 3.582 0.917 0.508 14.572 0.897 

3704 22-Sep-84 94.3 321.8 12.9 27.319 0.289 4.874 2.601 0.933 62.808 0.364 3.833 0.967 0.327 4.513 0.938 

3705 07-Scp-83 101.9 268.29 49.9 52.875 0.495 5.413 7.129 0.830 46.961 0.650 2.486 0.948 0.584 12.208 0.922 

Table 6.17 Catchment 7001 results for single fractional time-lagged reservoir 
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Figure 6.51 Results for event 3680 - without loss model 
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Figure 6.52 Results for event 3697 - without loss model 
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Figure 6.53 Results for event 3680 - with non-linear filter loss model 
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Figure 6.54 Results for event 3697 - with non-linear filter loss model 
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No loss model With non-linear filter loss model 

Event Date Rr SMD K a T NSE K a T C P ir NSE 

1836 22-Mar-68 97.9 218.87 0 40.934 0.753 3.381 16.364 0.975 37.726 0.804 2.245 0.894 0.250 18.519 0.985 

1837 12-May-68 33.1 120.8 2.4 95.945 0.533 4.787 11.387 0.981 51.899 0.583 4.738 0.864 0.092 9.999 0.987 

1838 26-Jun-68 39.1 142.59 1.4 47.341 0.677 2.636 13.619 0.931 24.005 0.891 0.907 0.828 0.391 16.977 0.983 

1840 lO-Oct-68 49.1 159.05 0 43.909 0.635 3.691 11.041 0.972 24.665 0.733 3.440 0.828 0.063 10.481 0.974 

1841 26-Oct-68 83.8 199.89 1.6 46.834 0.755 2.587 18.250 0.910 29.383 0.785 1.467 0.811 0.376 14.205 0.905 

1842 17-Jan-69 42.7 155.6 0 23.055 0.743 4.618 10.293 0.916 21.456 0.932 2.422 0.962 0.337 17.418 0.957 

1843 ll-Nov-69 40.7 154.03 0 104.293 0.525 2.702 11.471 0.973 18.851 0.807 1.496 0.598 0.144 10.695 0.986 

1844 15-Jan-70 53.2 217.51 0 26.535 0.706 4.806 10.121 0.944 19.068 0.904 3.209 0.823 0.245 14.368 0.969 

1845 Ol-Nov-70 51.1 224.03 0 30.674 0.649 3.605 9.224 0.985 26.342 0.748 2.648 0.891 0.212 11.552 0.986 

1846 18-Oct-7I 64.7 236.23 0 46.903 0.561 3.772 8.661 0.924 49.469 0.678 2.406 0.968 0.398 14.085 0.978 

1847 05-Dec-72 62.3 281.29 0 27.407 0.721 2.520 10.882 0.981 29.090 0.780 1.787 0.892 0.261 13.859 0.987 

Table 6.18 Catchment 57005 results for single fractional time-lagged reservoir 
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Figure 6.58 Results for event 1847 - with non-linear Tilter loss model 
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No loss model With non-linear filter loss model 

Event Date R.f Qp SMD K a T !C NSE K a T C P IC NSE 

2282 I6-Sep-70 37.8 280.68 20.4 24.419 0.356 5.835 3.119 0.976 13.792 0.492 4.914 0.854 0.176 3.637 0.986 
2283 31-Oct-70 15 258.9 0 7.480 0.856 5.735 5.598 0.938 7.683 0.817 5.771 0.988 0.020 5.290 0.926 

2284 n-Fcb-7I 51.6 285.25 0.8 17.284 0.538 5.911 4.633 0.885 20.880 0.708 3.133 0.930 0.480 8.597 0.969 

2285 20-NOV-71 25.5 181.98 0.3 26.310 0.722 3.864 10.601 0.718 15.183 0.943 2.262 0.998 0.511 13.002 0.832 

2286 l8-Jan-72 26.7 274.96 0 14.428 0.830 2.474 9.165 0.718 11.502 0.826 1.995 0.993 0.496 7.520 0.802 

2287 03-Jul-72 54.2 207.83 8.6 22.611 0.573 3.660 5.971 0.909 25.135 0.768 0.828 0.994 0.386 11.896 0.962 

2288 lI-Feb-73 17.8 152.69 0 10.305 0.936 5.343 8.876 0.818 10.317 0.975 4.832 0.995 0.009 9.732 0.807 

2289 15-Dec-73 24.7 182.58 0 7.934 0.530 9.170 2.997 0.846 7.935 0.677 6.837 0.954 0.050 4.064 0.828 
2290 30-Apr-75 19.9 162.83 0.9 14.615 0.762 5.910 7.719 0.930 13.837 0.857 5.448 0.993 0.031 9.503 0.918 
2291 24-Sep-75 64.6 492.98 0.7 6.782 0.772 4.421 4.383 0.902 10.823 0.739 3.586 0.985 0.214 5.813 0.914 

Table 6.19 Catchment 72006 results for single fractional time-lagged reservoir 
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Figure 6.59 Results for event 2286 - without loss model 
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Figure 6.60 Results for event 2282 - without loss model 
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Figure 6.61 Results for event 2286 - with non-linear filter loss model 
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Figure 6.62 Results for event 2282 - with non-linear filter loss model 
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Catchment No: 46005 30004 74001 25005 54004 37001 66011 28026 7001 57005 72006 

No loss 

model 

Min. 1.369 14.328 1.689 7.565 13.000 30.518 1.485 26.830 2.601 8.661 2.997 

No loss 

model 

Max. 8.121 695.410 19.630 31.476 478.255 467.497 7.500 46.445 37.523 18.250 10.601 No loss 

model Range 6.752 681.082 17.941 23.911 465.255 436.979 6.015 19.615 34.922 9.589 7.604 

No loss 

model 

Average 3.203 107.368 6.909 16.306 140.641 129.215 4.240 34.184 12.474 11.938 6.306 

With RF loss 

model 

Min. 1.441 12.403 2.855 11.533 26.871 59.900 1.988 42.680 2.586 9.999 3.637 

With RF loss 

model 

Max. 6.199 33.421 19.993 28.884 60.043 142.052 7.054 78.054 21.539 18.519 13.002 With RF loss 

model Range 4.758 21.018 17.138 17.351 33.172 82.152 5.066 35.374 18.953 8.520 9.365 

With RF loss 

model 

Average 3.717 18.951 7.440 18.527 44.390 80.842 5.188 54.275 9.111 13.833 7.905 

Table 6.20 Summary of results for each catchment 



6.2.4 Model Parameter Space Investigation 

The NSE results of tests of alternative parameter sets (calibrated for different events) on 

the model performance for the events on a sample catchment are shown in Table 6.20. 

In this case the initialised, single, fractional-order, time-lagged, linear reservoir with a 

non-linear rainfall filter has been used for the observed storm events for the East Dart at 

Believer (river gauge no. 46005). The cahbrated parameter sets are those taken from 

Table 6.9 and are numbered in Table 6.21 as follows. 

1 calibrated using GA on event 1287 

2 calibrated using GA on event 1289 

3 calibrated using GA on event 1292 

4 calibrated using GA on event 1297 

5 calibrated using GA on event 1298 

6 calibrated using GA on event 1299 

7 calibrated using GA on event 1300 

8 calibrated using GA on event 1301 

9 calibrated using GA on event 1302 

10 calibrated using GA on event 1303 

11 calibrated using GA on event 1304 

12 calibrated using GA on event 4351 

13 calibrated using GA on event 4352 

14 calibrated using GA on event 4353 
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Event 
Calibration Set Used 

Event 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1287 0.964 0.794 -0.227 0.336 0.690 0.763 0.106 0.602 0.595 0.748 0.208 0.885 0.633 0.408 
1289 0.586 0.977 -0.447 0.441 0.973 0.222 0.276 0.752 0.866 0.855 0.492 0.828 0.904 0.612 
1292 0.520 0.577 0.832 0.683 0.607 -0.145 -0.066 0.542 0.469 0.494 0.329 0.626 0.597 0.324 
1297 0.013 0.550 0.225 0.971 0.487 -0.858 -0.243 0.673 0.586 0.668 0.243 0.409 0.449 0.164 

1298 0.631 0.923 0.190 0.637 0.954 0.387 0.241 0.909 0.843 0.789 0.546 0.721 0.920 0.594 

1299 0.888 0.573 -0.517 0.046 0.512 0.896 0.105 0.288 0.310 0.505 0.038 0.730 0.426 0.265 
1300 -9.797 -5.528 -1.108 -16.425 -4.243 -10.066 0.974 -6.031 -2.417 -11.539 0.155 -11.545 -2.835 0.337 

1301 0.683 0.913 -0.262 0.763 0.848 -0.268 0.089 0.878 0.754 0.895 0.506 0.728 0.905 0.543 
1302 0.338 0.790 -0.527 -0.102 0.775 0.138 0.463 0.741 0.960 0.453 0.710 0.079 0.884 0.796 

1303 0.854 0.964 0.226 0.793 0.935 0.573 0.240 0.938 0.840 0.991 0.470 0.943 0.853 0.546 

1304 -2.815 -0.759 0.260 -3.757 -0.131 -3.634 0.579 -0.987 0.150 -2.792 0.948 -2.825 0.326 0.834 
4351 0.918 0.910 0.370 0.877 0.877 0.689 0.092 0.810 0.679 0.935 0.382 0.949 0.810 0.469 
4352 0.498 0.846 0.055 0.117 0.911 -0.360 0.229 0.693 0.686 0.341 0.618 0.750 0.919 0.704 

4353 -3.673 -1.683 -32.981 -3.554 -4.440 -0,611 0.410 -0.565 0.659 -1.283 0.857 -5.457 -1.847 0.936 

Table 6.21 NSE results for alternative calibrated parameter sets for events on catchment 46005 



From Table 6.21 the most consistent best performing calibration set for all the events is 

set 14. Plots of the predicted and observed hydrographs using calibration set 14 are 

available in Appendix E. 

The inter-relationship between the parameters is visualised using the interactive 

calibration-support system developed by Packham et al (2005) in Figure 6.63. This 

shows a parallel coordinates plot of the best fitting parameter sets from the GA 

calibration for a typical single-peak flow event on the same catchment (no. 1303, 10-

Nov-74). Recall Table 6.9 for the best set of parameter values found using the GA. 

N.B. On the visualisation plots a represents a, and Ka represents K°. 

-19683 

Figure 6.63 Parallel coordinates plot of parameters of best cluster for event 1303 

The parallel coordinates plot shows all the sets of parameter values for the best fitting 

models in a single picture. The parameters are arranged in parallel with lines joining the 
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values (i.e coordinates) of an individual model solution. The better solutions are shown 

in the darker hue. Figure 6.64 shows a scatter plot of the composite and T 

parameters with NSE indicating that there is a cluster of good solutions for a relatively 

narrow band of T and values in spite of the wide range of individual K and a values 

evident in Figure 6.64. 

Figure 6.64 Scatter plot of lagged reservoir parameters of best cluster for event 
1303 

For the associated loss model Figure 6.65 shows that the range of C and P values is 

relatively small for the better (darker hue) solutions, suggesting convergence. 
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Figure 6.65 Scatter plot of loss model parameters of best cluster for event 1303 

From the results presented in section 6.2.3 event 3884 (re. Figure 6.23) and event 656 

(re. Figure 6.39) exhibit anomalous calibration behaviour. The search spaces for these 

models have been visualised using the interactive calibration-support system developed 

by Packham et al (2005) and are given in Figures 6.66 - 6.68. Again, the better 

solutions are shown in a darker hue and Ka represents A^. 

For the flow event 3884 (02-Aug-84) for the River Lymn at Partney Mill (river gauge 

no. 30004) Figure 6.66 shows a scatter plot of the best fitting parameter sets from the 

GA calibration. Recall Figure 6.23 showing the anomalous model fit. The initialised, 

single, fractional-order, time-lagged, linear reservoir without a loss model has been used 

for this observed storm event. 
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Figure 6.66 Scatter plot of parameters of best cluster for event 3884 

The plot indicates a wide range of and T values leading to solutions of similar 

(although not very good) fitness. However, the plot should be compared with Figure 

6.25 where the inclusion of the non-linear rainfall filter loss model has resulted in a 

good fit to the observed streamflow hydrograph. 

For the flow event on the catchment 656 (02-Sep-65) for the River Roding at Redbridge 

(river gauge no. 37001) Figures 6.67 and 6.68 show scatter plots of the best fitting 

parameter sets from the GA calibration. Recall Figure 6.39 showing the anomalous 

model fit. The initialised, single, fractional-order, time-lagged, linear reservoir with and 

without the non-linear rainfall filter loss model has been used for this observed storm 

event. 
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Figure 6.67 Scatter plot of parameters of best cluster for event 656 - without loss 
model 

yj -0.5 

Figure 6.68 Scatter plot of parameters of best cluster for event 656 - with rainfall 
loss model 
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In a similar manner to the results for event 3884, Figures 6.67 and 6.68 demonstrate that 

the inclusion of the loss model has a constraining effect on the feasible and T spaces, 

but the K° range is still wide in Figure 6.68 indicating the poor convergence. However, 

the rainfall hyetograph in Figure 6.39 covers the period 0 - 2 6 hours, peaking at 12 

hours and leading to a peak streamflow at 18 hours. The later streamflow peak at 48 

hours is likely to be because of a lack of available rainfall data leading to this second 

event. 
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Chapter 7 Discussion 
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7.1 Theoretical Development 

In the light of field evidence (Kirchner 2003) that the travel times of conservative 

tracers in rainfall show a long-memory effect indicating that "old" (pre-storm event) 

water released from prior storage in the catchment dominates the streamflow response 

to a rain storm (i.e. water appears to be stored over a long time period but is discharged 

in a relatively short period) then the premise of runoff (rapid response) as distinct from 

baseflow (slow response) in natural (rural) catchments has been brought into question. 

The separation of runoff from baseflow in computational streamflow modelling, 

particularly for flood prediction, is the basis of the classical unit hydrograph approach. 

However, if the mixing of water within the surface/subsurface storage component of the 

catchment is to be represented, then a different model is necessary. A candidate 

approach has been identified in this study on the basis of the power-law asymptotic 

behaviour of fractional-order systems. The fractional calculus provides relaxation 

equations in the form of ordinary linear differential equations of non-integer order. The 

convolution kernel of the fractional-order integral exhibits long term memory loss (i.e. 

the system is dominated by more recent states as the independent variable, e.g. time, 

increases). This integral is part of the differ-integral composition (sequence) that 

defines the fractional derivative. Consequently, the assumption has been made that the 

rate of change of volume with time of a conceptual (virtual) reservoir representing the 

catchment behaviour can be expressed by a fractional-order time derivative of the 

outflow rate. This assumption has only been tested in so far as the resulting models 

have been successfully fitted to observed events. It is recommended that this 

assumption be tested by field observation (e.g. through the use of tracers on 

experimental catchments). In the light of such field evidence Zoch's (1934) assumption 

of a linear reservoir may prove to be restrictive and the use of the non-linear form given 

by equation (2.6) may be required in order to represent the catchment drainage 
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behaviour more closely. However, a non-linear model would involve an additional 

parameter and require an iterative solution scheme. 

A further advantage of the fractional-order differential equations derived in this theory 

is their linearity so that the principles of superposition and proportionality can be 

utilised in their solution. Applying the constraint that the order of the fractional 

derivative, a, is 0<a<\ has been shown to represent the heavily damped response of 

a system over the duration of the input event (i.e. it is non-oscillatory). This is typical 

of flood events in rivers. 

The merit of the use of the fractional derivative in the Caputo sense is that the initial 

conditions are incorporated as the traditional integer-order values. It is accepted that the 

Caputo definition is restrictive in that this infers a constant initialisation function. 

However, given the earlier discussion regarding the difficulty in defining the surface-

subsurface storage-flux history then the same is true of the actual initialisation function, 

again requiring further field studies of the interaction between the "old" and "new" 

water in the generation of total streamflow. In the meantime the Caputo derivative 

formulation has enabled useful model equations to be derived and tested in this study. 

The theory treats the catchment system as having spatially averaged (lumped) behaviour 

so that it is represented by an ordinary fractional order differential equation. This limits 

the applicability of the equation to flood forecasting applications, rather than the 

modelling scenarios of land use change, etc. The model could be extended to 

incorporate spatial variation (e.g. in land cover) by dividing into subcatchments or by 

incorporating a spatial derivative term. In addition this distributed form of model would 

permit the input of rainfall from multiple gauges (or radar data) to capture the effect of 
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moving storms across the catchment. Alternatively lateral inflows from subcatchments 

could be used as inputs rather than a single upstream input rainfall. 

The catchment characteristics were assumed constant over the total duration of the 

streamflow event (i.e. time-invariant) so that the coefficients of the differential 

equations are constants. There is no field evidence to suggest that this is not true, but it 

has yet to be verified. Future work could include time-varying parameters, although 

this would increase the model complexity and make parameter identification much more 

difficult. 

The general theory developed in this study was based on the foregoing assumptions 

resulting in the following ordinary fina-order linear differential equation with constant 

coefficients, aj. 

where %Di^°q{t) is the sequential Caputo fractional derivative defined as 

<iDrq{t)=<iDr,Dr..'iDr.D:q{t) (7.2) 

j-iimes 

It was shown that the generalised cascade model was still achieved by using a single 

composite fractional order a in place of afi in equation (7.1). In this way the 

conceptualisation of the catchment using a physically-intuitive integer number of 

reservoirs (i.e. with ^ = 1) is adequate. This formulation was shown to be a fractional 

order form of Chow and Kulandaiswamy's (1971) general storage equation. The 

properties of cascades with equal and unequal storage characteristics and varying 

numbers of reservoirs have been investigated and, in particular, the implications of the 

initial conditions required. Consequently, the classical Nash (1957; 1960) cascade of n 

reservoirs has been corrected and reinterpreted for fractional n. 
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The convolution formulation traditionally used in the solution for the forced response 

component of the solution of equation (7,1) was found to be unbounded at time zero. It 

was found that the solution could only be found by utilising the Laplace transform of 

the pulse rainfall hyetograph (Wang and Wu 1983) and recasting as equation (7.3). This 

solution technique overcomes Cavallini's (2006) problem for the cascade of 2 unequal 

reservoirs. 

The other cascade models can be obtained as particular cases as follows: 

• n - \ gives the single reservoir models 

• a - \ gives the classical integer order reservoir models 

• r = 0 gives the unlagged models 

For example when a = 1 and the system is initially relaxed (i.e. the second term of 

equation (7.3) is zero) then the basis of Dooge's (1959) general instantaneous unit 

hydrograph theory is obtained. 

The absence of the need for a cascade of reservoirs is a significant result (particularly 

for model parsimony) and this opens the way for potential future development of a 

lumped catchment model theory. A recommendation for future work is to investigate 

potential relationships between the parameters and physically measurable catchment 

descriptors (e.g. through the use of multiple regression analysis for a larger dataset than 

used in this study). This could prove valuable in the search for reliable models for 

ungauged catchments. In addition, in this lumped form, the fractional order 
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instantaneous unit hydrograph concept could be applied to the geomorphological lUH to 

investigate modelling drainage channel network evolution. 

7.2 Rainfall-Runoff Modelling 

For the particular case of the effective (net) rainfall to stormflow (runoff) transformation 

uninitialized (i.e. initially relaxed) cascade models were tested against the classical 

Nash cascade using the River Nenagh events. The model parameters were successfully 

fitted using the genetic algorithm. The results (Tables 6.1 - 6.3 and the associated plots 

in Appendices A and B) show good agreement with the observed runoff hydrographs. 

For the cascade of equal-Zf, fractional-order reservoirs, Table 6.1 shows that the storage 

delay times, K, lie in the range 1.37 - 7.90 hours (with an average of 3.72 hours). This 

range is similar to that for the cascade of 2 unequal-/^, fractional-order reservoir (Table 

6.2 has a range of 1.00- 8.28 hours for/^i and/^z, with an average of 3.26 hours) and to 

that for the Nash cascade (Table 6.3 has a range of 1.37 - 6.09 hours for K , with an 

average of 3.20 hours). However, in general, the cascade of equal-/C, fractional-order 

reservoirs produced better fits than the unequal-A" reservoirs and the Nash cascade to the 

observed runoff hydrographs for the events tested (shown by the NSE values in the 

Tables 6.1 - 6.3 and the plots in Appendices A and B). This suggests that the use of the 

a-order derivative and the lag parameter, 7, improve the rainfall-runoff model over that 

for the classical Nash cascade. The values of Grange between 0.31 and 1.82 hours 

(with an average of 1.03 hours) indicating that the lag parameter has significance. 

The range of n for the a-order cascade (1.04 - 3.32, with an average of 1.49) supports 

the use of a low number of reservoirs in the ft^ctional-order cascade for adequate 

fitting, whereas the Nash cascade covers a larger range up to 4.88. The alternative form 
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of fi^ctional order model using unequal-A" reservoirs confirmed this in that the 

minimum size series of 2 reservoirs produced similar results to the equal-A" cascade. 

This also fits with the findings of Chow and Kulandaiswamy (1971) for cascades of 

unequal integer-order reservoirs. Furthermore, the parameter fitting for the cascade of 2 

* 

unequal-A" fi-actional order reservoirs appears to converge to the integer order form (the 

a values are between 0.88 and 1.00, with an average of 0.98) which would appear to 

indicate that the unequal reservoir cascade does not improve the classical integer-order 

model for runoff prediction. 

The a values for the cascade of equal-A" reservoirs are close to 1 (i.e. the integer order -

Nash - cascade) but cover a small but significant range 0.7 - 1.0 (with an average of 

0.87). However, this variation may be a consequence of the modelling of net (effective) 

rainfall to runoff which is somewhat artificial since it requires pre-processing of the 

observed streamflow to separate the basefiow and subsequent subtraction of the losses 

from the observed rainfall. The techniques for doing so are subjective (refer to the 

review in section 2.2.1). Bree's (1978) presentation of the River Nenagh data set uses 

only a single autographic rain gauge record to represent the areal rainfall for the 

catchment which does not take account of storm movement across the catchment. The 

quality of the rating curve used to convert the observed river stage measurements to 

streamflow was not assessed. The subsequent processing of the streamflow data at 3 

hourly intervals assuming a constant baseflow to separate the runoff so that the 

percentage runoff could be derived fi-om the rainfall data has, therefore, introduced 

some uncertainty. 

Overall the composite model parameter nK^ values for the equal-ZT fractional order 

cascade (2.23 - 8.69, with an average of 4.56) are close to the nK values for the Nash 
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cascade (4.46 - 9.31, with an average of 6.25). For the unequal-/^ fractional order 

cascade the composite model parameter takes a slightly different form, K ° + K 2 , 

although the range 3.8 - 9.4, with an average of 6.36, is similar. It would appear that 

for the closed case of effective (net) rainfall to stormflow (runoff) the application of the 

fractional order system converges to the classical integer order unit hydrograph, which 

is to be expected for a system that conserves mass. This mass conservation is forced by 

the loss model in the pre-processing such that the volume of effective rainfall equals the 

volume of runoff. 

7.3 Rainfall-Streamflow Modelling 

7.3,1 Cascades of Reservoirs 

The sequential Caputo derivative used in the derivation of (7.1) requires a substantial 

number of initial conditions expressed as functions of the Caputo derivatives evaluated 

at / = 0^ This raises the issue of the complexity of the generalised cascade model with 

multiple reservoirs for practical application where the system is not initially at rest 

(unlike the rainfall-runoff transformation system assumption). Furthermore, if Lorenzo 

and Hartley's (2008) approach is taken to overcome the restriction of using constant 

initialisation with the Caputo derivative and time varying initialisation functions are 

introduced then each derivative term requires an associated initialisation frinction. This 

would add substantially to the model complexity. The implications for the development 

of parsimonious fractional order cascade models are significant. Consequently, a single 

fractional-order, time-lagged, linear reservoir subject to a single initial condition was 

used to test the viability of the new theory for modelling the rainfall-streamflow 

transformation. 
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7.3,2 Rainfall Loss Models 

A ftirther assumption was made in order to consider the influence of infiltration and 

evapotranspiration losses from the observed rainfall, and so derive the effective rainfall 

as the input to the fractional-order reservoir system. Of the rainfall loss models 

reviewed (re. section 2.2.1) the ^index, PR, and non-linear rainfall filter (RF) based on 

Young and Beven (1994) were tested. It was not possible to test an infiltration equation 

approach because no infiltration capacity data was available for the Flood Event 

Archive catchments, although this could be tested in a fiiture study for catchments with 

such data. Similarly, the lack of available antecedent daily rainfall time series data for 

the Flood Event Archive events prevented testing of the PDM model used in the 

revitalised F S R / F E H rainfall-runoff method. Again, ftiture work could include testing 

the PDM model where the data is available. 

The results for a sample catchment in Tables 6.4 - 6.6 and Figures 6.5 - 6.18 show the 

consistently superior performance of the non-linear rainfall filter (RF) model over the <jh 

index and PR. Consequently the RF loss model was selected for use in the simulations 

for the Flood Event Archive catchments. However, the loss model has not been 

validated in the field, and it remains an open problem. Conceptually, in many cases, 

loss models have been proposed on the basis of equating the volume of stormfiow to 

that of the effective rainfall. In the open system of streamflow generation such volume 

conservation does not necessarily hold because of mixing of event and pre-event water. 

The concept of baseflow as distinct from stormflow and its separation, therefore, is 

unclear. Because the "memory" effect is represented in the fractional order approach 

this renders the modelled system non-conservative where pre-event infiltrated water has 

a contributory effect on the subsequent streamflow output. Consequently, this may 

have a compensatory effect which requires a revised form of loss model to that used. 
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Conceptually, the observed rain storm is a source of energy to a system containing 

stored energy (see also (Tessier ei ai 1996)). This highlights the need to encapsulate 

the initialisation history correctly, and is an area for future investigation. In order to 

compare the influence of the loss model, the fractional-order reservoir system was run 

also without a loss function. Significantly, in many cases, the results of the calibrations 

with and without the loss model shown in Tables 6.9 - 6 . 1 9 (and in the plots in 

Appendices C and D) showed that the inclusion of a rainfall loss model only made 

modest improvements to the accuracy of the predictions. These results are considered 

further in section 7.3.3. 

7.3,3 Flood Event Archive Modelling 

For the general case of the effective (net) rainfall to streamflow transformation the 

initialised, single fractional order lagged reservoir model was tested for storms observed 

across a range of U K catchment scales (22km^ to 510km^) using the U K Flood Event 

Archive events. The model parameters (including those of the R F loss function used to 

derive the effective rainfall input) were fitted using the genetic algorithm. Generally, 

the results (Tables 6.9 - 6.19 and the associated plots in Appendices C and D) show a 

acceptable agreement with the observed runoff hydrographs for most catchments, but 

with some notable exceptions. 

Comparing the sample plots in Figures 6.19 - 6.62 the fitted hydrographs are closer to 

the observed streamflow when the R F loss function is included (and with smoother 

hydrograph shapes) although the results with no loss function were often acceptable. 

However, the 2 types of model (with and without loss model) are fitted with distinctly 

different parameter values. The most striking difference is in the very wide range of 

storage delay times, / L , (1.6 - 2998 hours) when no loss model is used compared with 
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the closer range (2.9 - 173 hours) when the loss model is included. There is a question 

of whether very high storage delay times for a catchment have a physical meaning for 

the model without a loss function. In contrast Table 6.20 shows that the ranges of the 

composite values are closer for the 2 types of model (1.4 - 695.4 without the loss 

function and 1.4 - 142,1 with the loss function). The results on an event by event basis 

in Tables 6.9 - 6.19 show greater agreement in the fitted K° values for particular events. 

This suggests that the K" parameter is more characteristic of the catchment and event. 

A notable example of the improved effect of the R F loss function on the performance of 

the fractional order model is illustrated in the results for event 3884 on catchment 

number 30004 (the River Lymn at Partney Mill) where Figure 6.25 shows the improved 

fit over that in Figure 6.23 (without the loss function). Consequently the following 

discussion is focussed on the results for the fractional order model with the RF loss 

function included. An area for future investigation of the nature of the K° parameter oil 

an event by event basis would be to compare the observed (total) rainfall volume with 

the observed streamflow volume to see whether K° is correlated with volume 

difference. 

Generally the sample plots in Figures 6.19 - 6.62 (see Appendix C for the fiill set of 

results) show a good fit of the model predicted hydrograph to the shape of the observed 

streamflow, especially the recession. Furthermore the better fits are for single peaked 

events. The model tends to be responsive to low rainfall or rainless periods in the event 

hyetograph resulting in relatively steep recessions between peaks (i.e. less damping) 

which does not always match the observed streamflow well. In addition the model 

appears to be applicable over a range of scales in terms of area (22 - 510 km^) and 

average annual rainfall (607 - 2265 mm), as well as for catchments including some 

urbanisation (up to 13% of area). No discemable pattern in parameter values with 
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catchment size was detected. Similarly, the model fit was not influenced by initial 

SMD, except that larger K values were required. This would appear to support the 

importance of the initialisation on the performance of the fractional order model. 

However, there are catchment specific features and data quality issues which may 

introduce some uncertainty into the model performance. For example Table 6.14 (and 

the associated plots in Appendix C ) for catchment number 37001 (the River Roding at 

Redbridge) show poor fits to the observed streamflow. The peak flows are 

underestimated, too early and with poorly fitting recessions. However diis may be due 

to the storage effect of artificial reservoirs on this catchment (Environment Agency 

2009). In particular, for event 656 (Figure 6.39) which has a very poor fit, there may be 

missing rainfall data after the initial streamflow peak (recall the observations in section 

6.2.4). Furthermore the derivation of the Catchment Average Rainfall Profile used in 

compiling the Flood Event Archive data set used few (often just one) autographic rain 

gauges adjusted so that the centroids of the observed hyetographs were matched (re. 

section 5.4.2). This introduces uncertainty as to whether the archived rainfall represents 

the areal rainfall correctly. Similarly the quality of the rating curves used to convert the 

observed river stage measurements to streamflows for each catchment is subject to 

uncertainty (e.g. in the number and range of field calibration measurements, stage 

recorder errors, and incidences of channel by-passing and channel instability at high 

flows). It is recommended, therefore, that the fractional-order model be tested on a 

broader set of catchments with a greater density of gauges. 

Overall the results across the range of UK. catchment scales tested (22km^ to 5IOkm^) 

showed that, generally, the single fractional order lagged reservoir model was 
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successftjl in predicting the total streamflow, with reasonably consistent iC values for 

the majority of events for a given catchment. 

7.3.4 Model Parameter Characteristics 

Whilst the use of the G A in fitting the parameters to the model has produced acceptable 

streamflow hydrographs in many cases, the intercomparison tests for the East Dart 

River at Believer (river gauge no. 46005) in Table 6.21 illustrate the uncertainty in 

defining a set of parameters for a particular catchment. The G A fitted parameters for 

calibration on an event by event basis in Table 6.9 show considerable variation. The 

results of the tests using calibration set 14 from Table 6.21 (and see the plots in 

Appendix E) confirm the issue of lack of unique identifiability. Furthermore, whilst 

outline testing of the key control parameters of the G A has been undertaken to 

determine working values for the purposes of calibrating the fractional order model, it 

cannot be taken for granted that the GA has converged on a global optimum (or, even 

that one exists). This is compounded by the uncertainties in the initialisation function, 

the loss model formulation as well as the quality of the data used. However, the 

visualisation of the clustering of good (high fitness) parameter sets identified by the G A 

for the sample event 1303 (Figures 6.63 - 6.65) indicates a relatively narrow band of T 

and values in spite of the wide range of individual K and a values evident in Table 

6.9. This suggests that convergence to an acceptable fit is possible with the fractional 

order model using the GA but the parameters are event-specific. A ftjrther constraint is 

necessary in order to improve the identifiability of the model at a catchment level. 

Again this raises the issue of the adequacy of the initialisation used and this is discussed 

ftirther in section 7.3.5. 
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The characteristic behaviour of the fractional order model (including loss function) for 

different K and a values can be seen in the sample plots in Figures 6.19 - 6.62 (and see 

Appendix C for the full set of results). Typically the low a-order models generate 

steeper peaks with a long tail recession. Conversely, higher a-order models result in a 

broader peak shape and a shorter recession. The a ranges fitted by the OA across the 

different events was 0.11 - 1.0, but varied between 0.45 and l.O using the averages for 

each catchment. Typically the low K reservoirs produce higher, narrower peaks, 

whereas the high K reservoirs generate lower, broader peaks. The K and IC ranges are 

discussed in section 7.3.3. Similar to the rainfall-runoff model results the inclusion of a 

time lag is important with the values of T ranging between 0.03 and 10 hours on an 

event by event basis (but ranging between 1,8 - 6.7 hours using the averages for each 

catchment). Figures 6.19 - 6.62 also show another feature of the fractional-order model 

response. For events with relatively low or zero rainfall at the start of the event the 

predicted hydrographs show a decay in streamflow from the initial flow condition until 

the rainfall commences, often below that of the observed hydrograph. This suggests 

that the assumed catchment history (the single constant initial condition, lyo, when using 

the Caputo fiiictional derivative) is too simplistic. This is coupled with the uncertainty 

over the choice of having been specified at / = 0 of the hyetograph. 

For the R F loss function the 2 parameters take values across most of the available range 

for each event, but, typically, using the averages for each catchment C > 0.7 and P < 0.5 

The implications of the loss model on the results are discussed in section 7.3.2. 

7.3.5 Initialisation History 

As discussed in sections 7.3.3 and 7.3.4, some of the cases of poor fit of the fractional 

order reservoir model to the observed data and the substantial variation in parameter 

178 



values for a given catchment may well be a consequence of the restricted initialisation 

used for the Caputo derivative. In particular it is evident that there can be a number of 

different catchment storage/flux histories that pass through a common single initial 

condition at / = 0 and result in different subsequent streamflow events. However, only 

one such history will give rise to the observed streamflow event for / > 0. This implies 

that each event is likely to have a different (but unique to that event) set of a, /T, T 

values which are defined by the initialisation history, which explains the variation in the 

values fitted to the different events for the same catchments. This approach to 

initialisation may supersede the use of single-valued antecedent conditions such as 

initial soil moisture deficit or antecedent precipitation index commonly used in 

streamflow modelling. However, the true initialisation representing the surface-

subsurface water mixing history for an event is not easily defined. The antecedent 

catchment state (given by the degree of soil water saturation and the recent passage of 

water through the catchment) may need to be captured as a time-history which will vary 

on an event-by-event basis. The form of such an initialisation function and over what 

pre-event timescale it should be evaluated is a subject of fijture research. A potential 

approach is to assume that the baseflow recession of the antecedent streamflow event 

characterises the surface-subsurface storage-flux history of a river. This may be 

modelled by the free response solution to the fractional order differential equation 

describing the single fi^ctional order lagged reservoir. The identification of the K and a 

parameters can be undertaken by fitting this term to the observed antecedent streamflow 

recession data. This could be undertaken for several sets of data to obtain catchment 

averaged values. However, the consequent adoption of a time-varying initialisation 

function requires the reformulation of the fractional differential equation since the 

Caputo derivative implies a constant initial condition. Lorenzo and Hartley (2008) have 

proposed a mathematical framework for this but the required Laplace transforms are not 
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always available in closed form. Furthermore, this approach is likely to be subject to 

the difficulties of an objective baseflow separation. This, therefore, also supports the 

need for future field investigation to identify a correct initialisation function. 
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Chapter 8 Conclusions and Recommendations 
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8.1 Conclusions 

The following have been developed in this study: 

1. A new general theory for the lumped rainfall-streamflow transformation using a 

fractional order linear deterministic systems approach subject to an initial condition. 

2. A general equation for the cascade of initialised time-lagged linear reservoirs of 

fractional order that further generalises Dooge's (1959) general theory of the 

instantaneous unit hydrograph and generalises the general storage equation of Chow 

and Kulandaiswamy (1971). 

3. The necessary conditions for the initialisation of cascade models resulting in a 

corrected differential equation form of the classical Nash (1957; 1960) cascade. 

4. A bounded solution technique using the unit step response function fitted using the 

genetic algorithm. 

5. A finite series expansion of the binomial function for fractional powers. 

6. The Laplace transform of the Caputo sequential derivative. 

The new model has been successfully applied to the classical closed system of effective 

rainfall to stormflow (runoff) modelling using a set of 22 pre-processed events for the 

River Nenagh. The cascade of 2 unequal fractional-order reservoirs was shown to 

converge to that of the integer order case, as did the cascade of equal reservoirs (but 

with some small differences), which is to be expected for a system that conserves mass. 

The single fractional order, lagged reservoir model with a constant initialisation 

function was successfully applied to the general open system of total rainfall to 

streamflow transformation for a selection of events from a range of UK catchment 

scales in terms of area (22km^ to 510km^), and average annual rainfall (607 - 2265 

mm), as well as for catchments including some urbanisation (up to 13% of area). 
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The assumption that the time-history of water storage/flow states in the 

surface/subsurface catchment system can be represented by a fractional-order time 

derivative of the outflow rate of a linear reservoir has been shown to be feasible. 

However, this assumption has only been tested in so far as the resulting models have 

been fitted to observed events. 

The second assumption made in the models presented, that the mixing effect observed 

between "old" and "new" water in the generation of total streamflow is represented by a 

constant initial condition (a consequence of the Caputo definition of a fractional 

derivative) appears to be restrictive. The results showed that the model was successful 

in predicting the total streamflow with reasonably consistent values for the majority 

of events, but the individual K and a values showed a wide variation. In addition, 

events with an initial SMD required larger K values. The parameter fitting using the GA 

for different storm events on the same catchment demonstrated that convergence to an 

acceptable fit is possible but that the parameters are event-specific. However, the true 

initialisation representing the surface-subsurface water mixing history is unlikely to be a 

constant. The antecedent catchment state (given by the degree of soil water saturation 

and the recent passage of water through the catchment) may need to be captured as a 

time-history which wil l vary on an event-by-event basis and should, therefore, improve 

the identifiability of the model at a catchment level. 

The non-linear rainfall filter (RF) loss function to represent the infiltration and 

evapotranspiration losses from the observed rainfall was found to improve the model fit 

over the ^index and PR approaches. However, for several events, the inclusion of a 

rainfall loss function only made modest improvements to the accuracy of the model 

output. Because pre-event infiltrated water has a contributory effect on the subsequent 
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streamflow output and this "memory" effect is represented in the fractional order 

approach then this may have a compensatory effect which requires a revised form of 

loss model to be developed (i.e. the system is non-conservative). 

The results show that the new approach is viable for modelling the rainfall-streamflow 

transformation at the lumped catchment scale without the need for cascades of 

reservoirs, which reduces the number of model parameters required. 

8.2 Recommendations 

The non-constant iC parameter values for each catchment appear to indicate that the 

correct representation of the catchment storage/flux history is necessary on an event-by-

event basis. A potential approach would be to test the assumption that the recession 

curve of the antecedent streamflow event characterises the recent surface-subsurface 

storage-flux history of a river. This may be modelled by the free response solution to 

the fractional order differential equation reformulated in accordance with Lorenzo and 

Harley's (2008) approach. The identification of the K and a parameters can be 

undertaken by fitting this term to the observed antecedent streamflow recession data. 

Similarly, further insight into the parameter may be obtained by comparing the 

observed (total) rainfall volume with the observed streamflow volume to see whether K" 

is correlated with volume difference on an event by event basis. Further work is also 

recommended on determining the nature of the initialisation function through the use of 

field tracer studies. 

The assumption of a linear relationship between outflow and storage for the fractional-

order reservoir has been shown to be viable for the range of events tested in this study. 

However, the use of a non-linear form may improve the representation of catchment 
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drainage behaviour more closely. However, a non-linear model would involve an 

additional parameter and require an iterative solution scheme, thus increasing the 

computational overhead. Similarly the validity of the assumed constant catchment 

parameters could be tested by allowing them to vary with time, although this would 

increase the model complexity and make parameter identification much more difficult. 

In order to incorporate spatial variation (e.g. in land cover) and the effect of moving 

storms across the catchment a distributed model can be derived by dividing into 

subcatchments or by incorporating a spatial derivative term. Alternatively lateral 

inflows from subcatchments could be used as inputs to a river routing model. In 

addition, the fractional order instantaneous unit hydrograph concept could be extended 

to the geomorphological lUH to investigate modelling drainage channel network 

evolution. 

The potential application of the fractional-order reservoir model to predicting 

streamflow in ungauged catchments using only observed rainfall requires the 

identification of relationships between the parameters and physically measurable 

catchment descriptors. One approach proposed is to use multiple regression analysis of 

the model parameters and catchment descriptors for a larger dataset than that used in 

this study. It is important, however, that high quality observations of event rainfall and 

streamflow are selected with a view to reducing the uncertainty inherent in measured 

and derived input data. 
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Appendix A: R. Nenagh Results - Equal Casacade 

The following Figures show the predicted and observed runoff hydrographs together 

with the net (effective) event rainfall hyetograph for the River Nenagh. The predictions 

were made with the cascade of n equal-A" fractional linear reservoirs subject to a time 

lag, T. 
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Appendix B: R. Nenagh Results - Unequal Casacade 

The following Figures show the predicted and observed runoff hydrographs together 

with the net (effective) event rainfall hyetograph for the River Nenagh. The predictions 

were made with the cascade of two unequal-ZC fractional linear reservoirs. 
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Appendix C: Single Fractional Reservoir Results With Non-
Linear Loss Model 

The following Figures show the predicted and observed streamflow hydrographs 

together with the observed event rainfall hyetograph for the selected catchments from 

the UK Flood Event Archive. The predictions were made with the initialised, single, 

fractional-order, time-lagged, linear reservoir, subject to a non-linear rainfall filter loss 

model - equation (5.18). 
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C I : Catchment 46005 - East Dart River at Believer 
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Figure CI .2 Predicted and observed results for event 1289 
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Figure C1.4 Predicted and observed results for event 1297 
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Figure C1.8 Predicted and observed results for event 1301 

215 



Observed Slfeamflow 

Fredicted Streamflow 

Rainfall 

Ttmr(l i ( 

5 ^ a 

20 

25 

35 

Figure C1.9 Predicted and observed results for event 1302 
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Figure CI,10 Predicted and observed results for event 1303 
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Figure CI.12 Predicted and observed results for event 4351 
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Figure CI.13 Predicted and observed results for event 4352 
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Figure CI.14 Predicted and observed results for event 4353 
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C2: Catchment 30004 - River Lymn at Partney Mill 
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Figure C2.2 Predicted and observed results for event 495 
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Figure C2.4 Predicted and observed results for event 3874 
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Figure C2.6 Predicted and observed results for event 3878 
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Figure C2.8 Predicted and observed results for event 3881 
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Figure C2.10 Predicted and observed results for event 3884 
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Figure C2.12 Predicted and observed results for event 3893 
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Figure C2.13 Predicted and observed results for event 4166 
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C3: Catchment 74001 - River Duddon at Duddon Hall 
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Figure C3.1 Predicted and observed results for event 2360 
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Figure C3.2 Predicted and observed results for event 2361 
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Figure C3.3 Predicted and observed results for event 2362 
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Figure C3.4 Predicted and observed results for event 2363 
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Figure C3.6 Predicted and observed results for event 2365 
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Figure C3.8 Predicted and observed results for event 2367 
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C4: Catchment 25005 - River Leven at Leven Bridge 
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Figure C4.1 Predicted and observed results for event 3989 
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Figure C4.6 Predicted and observed results for event 3997 

232 



25 

10 

Observed Streamflow 

Predicted Slre2mna« 

Rainfall 

10 

30 40 

Ttme (li) 

50 60 70 

Figure C4,7 Predicted and observed results for event 3998 
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Figure C4.8 Predicted and observed results for event 3999 
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Figure C4.12 Predicted and observed results for event 4393 
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Figure C4.13 Predicted and observed results for event 4395 
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Figure C4.14 Predicted and observed results for event 4399 
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Figure C4.15 Predicted and observed results for event 4401 
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C5: Catchment 54004 - River Sowe at Stoneleigh 
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Figure C5.1 Predicted and observed results for event 1559 
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Figure C5.2 Predicted and observed results for event 1560 
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Figure C5.8 Predicted and observed results for event 1568 
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Figure C5.10 Predicted and observed results for event 1571 
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Figure C5 . l l Predicted and observed results for event 1572 

243 



C6: Catchment 37001 - River Roding at Redbridge 
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Figure C6.1 Predicted and observed results for event 650 
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Figure C6.2 Predicted and observed results for event 651 
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Figure C6.3 Predicted and observed results for event 653 
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Figure C6.6 Predicted and observed results for event 658 
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Figure C6,7 Predicted and observed results for event 659 
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C7: Catchment 66011 - River Conwy at Cwm Llanerch 
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Figure C7.1 Predicted and observed results for event 2072 
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Figure C7.2 Predicted and observed results for event 2073 
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Figure C7.4 Predicted and observed results for event 2075 
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Figure C7.5 Predicted and observed results for event 2076 
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Figure C7.8 Predicted and observed results for event 2079 
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Figure C7.10 Predicted and observed results for event 2081 
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Figure C7.12 Predicted and observed results for event 2083 
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Figure C7.13 Predicted and observed results for event 2084 
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C8: Catchment 28026 - River Anker at Polesworth 

45 

4 0 

20 40 

T o n e (h) 

50 

- Observed Slreamflow 

Predicted Streamflcw 

Rain fa l l 

V 20 

60 

I 
2 1 

e 

Figure C8.1 Predicted and observed results for event 409 
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Figure C8.5 Predicted and observed results for event 413 
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C9: Catchment 7001 - River Findhorn at Shenachie 
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Figure C9.1 Predicted and observed results for event 3671 
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Figure C9.2 Predicted and observed results for event 3673 
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Figure C9.8 Predicted and observed results for event 3686 
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Figure C9,12 Predicted and observed results for event 3697 
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Figure C9.15 Predicted and observed results for event 3705 
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CIO: Catchment 57005 - River Taffat Pontypridd 
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Figure CI0.1 Predicted and observed results for event 1836 
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Figure C10.8 Predicted and observed results for event 1844 
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Figure ClO.lO Predicted and observed results for event 1846 
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Figure C lO. l l Predicted and observed results for event 1847 
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C l l : Catchment 72006 - River Lune at Kirkby Lonsdale 
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Figure C I 1.1 Predicted and observed results for event 2282 
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Figure C11.2 Predicted and observed results for event 2283 
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Figure C I 1.9 Predicted and observed results for event 2290 
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Appendix D: Single Fractional Reservoir Results Without 
Loss Model 

The following Figures show the predicted and observed streamflow hydrographs 

together with the observed event rainfall hyetograph for the selected catchments from 

the UK Flood Event Archive. The predictions were made with the initialised, single, 

fractional-order, time-lagged, linear reservoir, without using a rainfall loss model. 
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D l : Catchment 46005 - East Dart River at Believer 
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Figure D1.6 Predicted and observed results for event 1299 
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Figure Dl. lO Predicted and observed results for event 1303 
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Figure D1.12 Predicted and observed results for event 4351 
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D2: Catchment 30004 - River Lymn at Partney Mill 
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Figure D2.1 Predicted and observed results for event 492 
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Figure D2.4 Predicted and observed results for event 3874 
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Figure D2.6 Predicted and observed results for event 3878 
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Figure D2.8 Predicted and observed results for event 3881 
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Figure D2.10 Predicted and observed results for event 3884 
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Figure D2.12 Predicted and observed results for event 3893 
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Figure D2.13 Predicted and observed results for event 4166 
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D3: Catchment 74001 - River Duddon at Duddon Hall 
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Figure D3.2 Predicted and observed results for event 2361 
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Figure D3.4 Predicted and observed results for event 2363 
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Figure D3.6 Predicted and observed results for event 2365 
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Figure D3,7 Predicted and observed results for event 2366 
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Figure D3.8 Predicted and observed results for event 2367 
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D4: Catchment 25005 - River Leven at Leven Bridge 
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Figure D4.2 Predicted and observed results for event 3990 
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Figure D4.5 Predicted and observed results for event 3996 

20 

16 

* 12 

10 

- O b s e r v e d Streamflow 

- Fred icted a r e f l m f l o w 

- R a i n f a l l 

2 t 

16 

20 

10 30 40 

T i i n p (Ii> 

60 70 

Figure D4.6 Predicted and observed results for event 3997 
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Figure D4.8 Predicted and observed results for event 3999 
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Figure D4.11 Predicted and observed results for event 4018 
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Figure D4.12 Predicted and observed results for event 4393 
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Figure D4.13 Predicted and observed results for event 4395 
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Figure D4.14 Predicted and observed results for event 4399 
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Figure D4.15 Predicted and observed results for event 4401 
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D5: Catchment 54004 - River Sowe at Stoneleigh 
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Figure D5.1 Predicted and observed results for event 1559 

50 

45 

^ 30 

25 

20 

10 

• Ob scrw ed Streemnow 

• Predicted Streamflow 

Ra in fa l l 

20 

20 25 

T i i n t t h ) 

30 35 4 0 45 

Figure D5.2 Predicted and observed results for event 1560 
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Figure D5.3 Predicted and observed results for event 1561 
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Figure D5.4 Predicted and observed results for event 1562 
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Figure D5.5 Predicted and observed results for event 1563 
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Figure D5.6 Predicted and observed results for event 1564 
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Figure D5,7 Predicted and observed results for event 1567 
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Figure D5.8 Predicted and observed results for event 1568 
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Figure D5.9 Predicted and observed results for event 1570 

Observ ed Streamflow 

Predicted Streamflow 

Ra in fa l l 

TBne ( l i ) 

30 

Figure D5.10 Predicted and observed results for event 1571 
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Figure D5.11 Predicted and observed results for event 1572 
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D6: Catchment 37001 - River Roding at Redbridge 
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Figure D6.1 Predicted and observed results for event 650 
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Figure D6.2 Predicted and observed results for event 651 
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Figure D6.3 Predicted and observed results for event 653 
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Figure D6.4 Predicted and observed results for event 656 
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Figure D6.5 Predicted and observed results for event 657 
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Figure D6.6 Predicted and observed results for event 658 
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Figure D6.7 Predicted and observed results for event 659 
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D7: Catchment 66011 - River Conwy at Cwm Llanerch 
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Figure D7.1 Predicted and observed results for event 2072 
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Figure D7.2 Predicted and observed results for event 2073 
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Figure D7.3 Predicted and observed results for event 2074 
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Figure D7.4 Predicted and observed results for event 2075 
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Figure D7.5 Predicted and observed results for event 2076 
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Figure D7.6 Predicted and observed results for event 2077 
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Figure D7,7 Predicted and observed results for event 2078 
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Figure D7.8 Predicted and observed results for event 2079 
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Figure D7.9 Predicted and observed results for event 2080 
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Figure D7.10 Predicted and observed results for event 2081 
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Figure D7.11 Predicted and observed results for event 2082 
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Figure D7.12 Predicted and observed results for event 2083 
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D8: Catchment 28026 - River Anker at Polesworth 
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Figure D8.1 Predicted and observed results for event 409 
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Figure D8.2 Predicted and observed results for event 410 

321 



Observed streamflow 

Predicted Streamflow 

Rainfall 

Tbne<b) 

Figure D8.3 Predicted and observed results for event 411 

45 

40 

35 

30 

20 

10 

Observed Streamfkiw 

Predicted Streaniflcw 

Rainfall 

30 40 50 

Tanr (h) 

Figure D8.4 Predicted and observed results for event 412 
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Figure D8.5 Predicted and observed results for event 413 
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D9: Catchment 7001 - River Findhorn at Shenachie 

200 1 

. 120 

Obseiv ed Streamflow 

— - Fredicled areBmnew 

Rainfall 

Tant (h> 

25 

30 

Figure D9.1 Predicted and observed results for event 3671 
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Figure D9.2 Predicted and observed results for event 3673 
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Figure D9,3 Predicted and observed results for event 3675 
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Figure D9.5 Predicted and observed results for event 3678 
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Figure D9.6 Predicted and observed results for event 3680 
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Figure D9.7 Predicted and observed results for event 3682 
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Figure D9,8 Predicted and observed results for event 3686 
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Figure D9.9 Predicted and observed results for event 3687 
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Figure D9.10 Predicted and observed results for event 3688 
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Figure D9.11 Predicted and observed results for event 3691 
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Figure D9.12 Predicted and observed results for event 3697 
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Figure D9.13 Predicted and observed results for event 3698 
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Figure D9.14 Predicted and observed results for event 3704 
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DIO: Catchment 57005 - River Taff at Pontypridd 
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Figure DlO.l Predicted and observed results for event 1836 

ObiervedStreamflow 

Prediaed Streamflow 

Rainfall 

Ttim- (h) 

Figure D10.2 Predicted and observed results for event 1837 
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Figure D10.3 Predicted and observed results for event 1838 
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Figure D10.4 Predicted and observed results for event 1840 
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Figure D10.6 Predicted and observed results for event 1842 
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Figure D10.8 Predicted and observed results for event 1844 
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Figure D10.9 Predicted and observed results for event 1845 
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Figure DIO.IO Predicted and observed results for event 1846 
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Figure DlO. l l Predicted and observed results for event 1847 
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D l l : Catchment 72006 - River Lune at Kirkby Lonsdale 
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Figure Dl 1.1 Predicted and observed results for event 2282 
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Figure D11.2 Predicted and observed results for event 2283 
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Figure D11.3 Predicted and observed results for event 2284 
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Figure D11.4 Predicted and observed results for event 2285 
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Figure DI1.5 Predicted and observed results for event 2286 
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Figure D11.7 Predicted and observed results for event 2288 
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Figure Dl l .8 Predicted and observed results for event 2289 
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Figure D l l . lO Predicted and observed results for event 2291 
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Appendix E : Single Fractional Reservoir Results Using 
Calibration Set 14 

The following Figures show the predicted and observed streamflow hydrographs 

together with the observed event rainfall hyetograph for the initialised, single, 

fractional-order, time-lagged, linear reservoir with a non-linear rainfall filter using 

calibration set 14 (re. section 6.2.4) for the East Dart at Believer (river gauge no. 

46005). 
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Figure E2 Predicted and observed results for event 1289 
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Figure E4 Predicted and observed results for event 1297 
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Figure E5 Predicted and observed results for event 1298 
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Figure E6 Predicted and observed results for event 1299 
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Figure E9 Predicted and observed results for event ]302 
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Figure E10 Predicted and observed results for event 1303 
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Figure E l 2 Predicted and observed results for event 4351 
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Figure E13 Predicted and observed results for event 4352 
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Introduction 

Computational modeling o f the transformation o f rainfall to streamflow is important for 
a number o f c iv i l engineering applications, for example flood and drought forecasting, 
flood defense design, and predicting the effects o f climate and land use change on the 
hydrological response o f watersheds. An essential aspect o f computational rainfall-
streamflow modeling is calibration o f the parameters for the numerical model to fit a set 
o f field observed data, particularly given the number o f conceptual models in use that 
have parameters that cannot be measured independently. However, the mult i ­
dimensional nature o f such models, parameter interaction and sensitivity often results in 
non-smooth, mult imodal response surfaces leading to problems in the attempt to 
identify the model uniquely (Gupta et al, 2003b). Manual calibration, whereby the user 
chooses or makes a best-estimate o f the set o f parameter values, tests the model against 
an observed calibration data set, evaluates some measure o f fitness (e.g. a numerical 
objective function) and then revises the parameter estimates, is time-consuming and 
requires experience. Although evolutionary computing-based techniques have been 
developed for automatic global calibration o f models, notably the shuffled complex 
evolution, SCE-UA (Duan et al. 1992), there is evidence when used with single 
objective function measures o f model fitness to suggest that there are different sets o f 
parameter values wi th similar fitness, which Beven (1993) describes as "equif inality" 
(see also Beven 2006). In addition to errors in the observed data, the structure o f the 
model and over-parameterization may render it impossible to identify a unique set o f 
parameters for calibration. For example Duan et al (1992), Gan and B i f tu (1996) and 
Wang (1997) found that calibration o f multi-parameter conceptual rainfal l -nmoff 
models using a single objective function even with synthetic data (for a hypothetical set 
o f global optimal parameter values) produced multiple local optima o f similar fitness; 
and Uhlenbrook et al (1999) showed that even conceptually unrealistic sets o f parameter 
values could produce good predictions. 

A number o f computer-based tools for helping the user to quantify the calibration 
uncertainty have been proposed by Kuczera (1983), Kuczera and Parent (1998), Beven 
and Binley (1992), Beven and Freer (2001), Kavetski et al (2002), and Wagener et al 
(2003), among others. The techniques generally rely upon Monte Carlo sampling o f the 
parameter space and require substantial numbers o f objective function evaluations 
which can be computationally expensive for complex models. Montesinos and Beven 
(1999) used a genetic algorithm, GA (Goldberg 1989; Holland 1975), to reduce the 
number o f function evaluations when assessing the model uncertainty using the 
Generalised Likel ihood Uncertainty Estimation (GLUE) technique (Beven and Binley 
1992) and found that over several generations, the GA solutions tended to converge on a 
region o f attraction around an optimum. Werner and Khu (2001) extended this 
approach by incorporating niching (Goldberg 1989) to avoid convergence on a local 
optimum before applying the GLUE technique and tested the method on a river routing 
model. Khu and Werner (2003) have gone on to use artif icial neural networks to 
represent the behavior o f a rainfall-streamflow model during the sampling stage o f the 
G L U E technique (where sets o f parameter values that produce above a threshold fitness 
are retained). The actual rainfall-streamflow model is then used with the selected 
parameter sets to evaluate the corrected fitness. 

A n alternative approach has been to use multiple objective functions to extract more 
information from the observed data and thereby constrain the calibration. Yapo et al 
(1998) developed a multi-objective complex evolution technique ( M O C O M - U A ) 
derived from the SCE-UA method (Duan et al. 1992) which uses Pareto ranking 
(Goldberg 1989) and has been tested using 2 objective functions on the Sacramento soil 
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moisture accounting model, SAC-SMA (Bumash et al. 1973) with observed data; and 
extended to 3 objectives (Gupta et al. 1998). Madsen (2000) used 4 objectives to 
represent the runoff volume, hydrograph shape, peak flows and low flows and then 
computed an overall fitness measure using the Euclidean distance incorporating user-
defined transformation constants for each component objective function. This was then 
optimized using the SCE-UA. Gupta et al (2003a) followed Boyle et al (2000) and 
partitioned the streamflow hydrograph into driven and non-driven components and used 
the root mean square error for each component as the objectives in the M O C O M - U A 
technique, but found that the endpoints o f the Pareto optimal parameter sets identified 
were not wel l defined. Consequently, Vrugt et al (2003) developed the multi-objective 
shuffled complex evolution Metropolis (MOSCEM-UA) algorithm based on the SCE-
U A but using the Metropolis Hastings sampling strategy in place o f the downhil l 
simplex to avoid convergence on a single optimum. This permits the estimation o f the 
most l ikely parameter set based on Pareto dominance and the underiying posterior 
probability distribution to attempt to quantify uncertainty. The use o f multi-objective 
calibration involves large numbers o f model runs with the associated computational 
overhead. There has been research into reducing the calibration time o f multi-objective 
techniques. For example Liu et al (2004) have applied a k-nearesr neighbor classifier 
system to predict the subsets o f good solutions from an initial multi-objective genetic 
algorithm (MOGA) run and used them to update the population o f parameter sets before 
running the next generation o f the M O G A with the rainfall-streamflow model. They 
found a substantial reduction o f function evaluations required to produce the Pareto 
front (albeit smaller than that obtained by just running the MOGA) . 

Alongside the development o f automatic calibration tools has been work on 
incorporating the expertise o f the hydrological modeler through user interaction. A 
number o f comparative studies have demonstrated the value o f semi-automatic mul t i -
objective calibration tools when used in combination wi th the user's qualitative 
knowledge o f the reliability o f the data and the model being used to make the 
calibration suit the application (Bender and Simonovic 1994; Rafiq et al. 2003; Gupta et 
al. 1999; Harlin 1991; Houghton-Carr 1999; Madsen et al. 2002; Zhang and Lindstrom 
1997; Hogue at al 2000). Visualization helps the modeler to observe the complexity o f 
the parameter and objective fimction spaces and assists in the process o f selecting a set 
o f parameter values for the particular watershed application. The GLOBE system 
developed by Solomatine (1995, 1999) includes a computer-generated visualization o f 
single objective function clusters in 2D parameter sub spaces, although without a 
faci l i ty for the user to examine other regions or interact wi th the calibration algorithms 
unless the system is restarted. The Real-time Interactive Basin Simulator o f Garrote 
and Becchi (1997) incorporates both a distributed real-time flood forecasting model and 
user-interactive tools for the visualization o f flow parameters at user-defined locations 
wi th in a river basin as the storm simulation progresses. Wagener et al (2001) have 
developed a toolkit for identifying both the model structure and calibration o f the 
parameters which uses Monte Carlo sampling o f the parameter space and provides the 
user wi th a selection o f visualization techniques for the parameter and objective 
function spaces. 

This paper presents the application o f an efficient user-driven calibration-support 
system that relies upon rapid visualization o f the model parameter sub-spaces and 
objective function spaces obtained from a GA-based search. A key feature o f the 
system is the faci l i ty for the user to interactively select regions o f interest for refined 
search or for testing the robustness o f potentially good solutions based on either their 
experience and/or the knowledge revealed by a clustering technique. The system allows 
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different objective functions to be tested. It is accepted that there may not be a single 
parameter set but a number o f sets fi-om which the user must select for the model. A 
particularly novel aspect o f this application is the introduction o f an objective function 
based on the changing slope o f the streamflow hydrograph. 

Objective Functions 

A number o f reviews have been undertaken o f the use o f common single objective 
functions in rainfall-streamflow model calibration (Cooper et al. 1997; Diskin and 
Simon 1977; Legates and McCabe 1999). In many cases the simple least squares (or 
root mean square error, RMSE) or the Nash-Sutcliffe eff iciency, NSE (a normalized 
version o f the RMSE) has been used, but these tend to emphasize the fitting o f peak 
flows. Sorooshian and Dracup (1980) introduced the heteroscedastic maximum 
likel ihood estimator (HMLE) to account for non-constant variance error in the observed 
streamflow data. Wi th the exception o f selecting at least one objective function which 
takes account o f the error in the measurement data, there does not appear to be a 
consensus on which group o f objective functions should be used in multi-criteria 
calibration (see the review in the introduction o f this paper). For the purposes o f 
demonstrating the calibration system presented in this paper 2 objective functions were 
used- The first objective was the commonly-used RMSE (given that error-fi-ee synthetic 
streamflow data was used): 

^^=j'ti^o.s,.'Mf (1) 
where qobs.i is the observed streamflow at time /, gt(0) is the streamflow predicted by the 
model at t ime /, and n is the number o f daily streamflow values used in the calibration. 
To account fo r the limitations o f the RMSE, a second objective function was required 
that would f i t the observed hydrograph shape across the range o f flows. A novel 
approach was to compare the slopes (after Rafiq et al (2006b)) o f the observed and 
predicted hydrographs, expressed as the root mean square error o f slope, RMSslope, 
given by in equation 2. 

Aslope =^^t{slope^,^^^-slopeXd)f (2) 

where slope = ^'"^ (3) 
^ 2A/ ^ ^ 

for I < / < / I using a central difference approximation; and at the end points o f the time 
series the slopes were estimated using forward and backward differences as fol lows: 

' ^ - P ^ - ^ (4) 

slop^^^lnZ^ (5) 
A/ 

At is the timestep (1 day for the daily time series used) and qt is the streamflow at a 
particular time, /. 
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Optimization Algorithm 
Duan et al (1992) identified the existence o f a number o f regions o f attraction in the 
parameter space for a typical conceptual model where the calibration algorithm can 
converge to a solution. These regions were found to contain numerous minor local 
optima. The response surfaces tended to be discontinuous and non-convex with areas o f 
parameter interaction. These types o f spaces make the search for an optimum set o f 
parameter values by traditional gradient-based methods di f f icu l t or impossible. 
Consequently, emphasis has been placed on the use o f evolutionary search techniques, 
such as genetic algorithms. GA search operates in a similar manner to Darwinian 
natural selection (Goldberg 1989; Holland 1975). In the algorithm an initial population 
o f randomly selected sets o f parameter values is tested for fitness (by comparing model 
predictions using each set o f parameters with observed streamflow) and a new 
population o f parameter sets is evolved by applying reproduction, crossover and 
mutation operations on selected members o f the parent population. The selection is 
made using a probabilistic rule weighted according to fitness. The process is repeated 
with a view to evolving fitter populations. Goldberg and Kuo (1987) were the first to 
apply the GA to a flow problem in civ i l engineering, by optimization o f a pipeline. The 
application has been extended to pipe networks and multi-reservoir systems for the 
optimization o f water resource systems (for example Jeong and Abraham 2006; Sharif 
and Wardlaw 2000; Wu and Simpson 2001). Wang (1991) first used a genetic 
algorithm-based automatic calibration o f multi-parameter conceptual rainfall-runofT 
models. This application has been flirther tested by a number o f researchers (Franchini 
1996; Liong et al. 1995; Ndir i tu and Daniell 1999; Wang 1997; Yang and Douglas 
1998, among others). One o f the outcomes o f this work is that the GA may not always 
converge to the global optimum solution (where one has been identified by the .use o f 
data synthesized for a model run wi th a predefined set o f parameter values) and-that it 
may require a gradient-based optimization technique to refine the search once the GA 
has converged. In order to avoid convergence onto a single optimum region a low 
generational GA with moderately high mutation rates was adopted in the calibration 
system described in this paper. This also enabled the system to rapidly generate diverse 
parameter solutions o f varying fitness, for subsequent visualization and analysis by the 
user. In this way the user can continually refine and test their chosen parameter region 
for calibration, without the need for large numbers o f function evaluations (unlike 
Monte Carlo sampling systems). 

User-Driven Calibration-Support System 
The interactive calibration-support system was developed by Packham (2003) for the 
visualization o f multivariate data and for decision support in engineering design tasks 
through user interaction. The system uses evolutionary computing and clustering 
techniques to visualize the optimization o f multidimensional models and to evaluate 
robust regions o f the parameter spaces. The system, together wi th a review o f the 
development o f interactive visualization techniques for engineering design, using 
evolutionary computing, is presented in Packham et al (2005). 
In outline the system has been designed with the fol lowing features: 

o Rapid sampling o f the feasible parameter and objective spaces by using short 
GA runs o f 20 generations wi th, typically, 100 members in the population (i.e. 
2100 model simulations, including evaluating the initial population o f solutions). 
The low number o f generations avoids convergence onto a single optimum 
region, and the use o f moderately high crossover and mutation rates, particulariy 
i f duplicate solutions are generated, maintains diversity. This allows the user to 
subsequently select regions for further search, whilst l imit ing the computational 
overhead. 
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• Easy to use graphical user interface. This has been designed in accordance with 
Shneiderman's (1998) principles o f presenting the user with an overview, zoom 
faci l i ty, and details on demand. 

• High dimensional visualization o f the parameter and objective function spaces, 
including 2-D and 3-D views, scatterplot matrix (Chambers et al. 1983), parallel 
coordinates (Inselberg and Dimsdale 1994), and plots in transformed coordinate 
systems i f required. In this way the user can investigate parameter interaction 
and model sensitivity to particular parameters. 

• Automatic clustering option. A kernel density estimation algorithm (Silverman 
1986) is applied to identify clusters o f solutions in either the parameter or 
objective function space. The technique is described in the fol lowing section. 

• To aid visualization color is applied: where more intense, pure color (i.e. darker) 
is used wi th in a particular cluster to emphasize higher fitness solutions; and 
different color hues are used to distinguish between clusters. 

• Interactive features. The user can quickly zoom into subspaces and select 
regions for additional GA searches to generate further solutions or for the 
identification o f clusters - either automatically or manually. A l l the solutions 
(i.e. high and low fitness) generated by the GA search are retained by the 
system. In this way the user has control over both how and where the 
investigation o f the search space takes place, including regions outside o f 
clusters o f good solutions found by the GA. The user can also visualize the 
model output for any o f the parameter sets generated by the system, by simply 
selecting a solution wi th the mouse. A plot o f the predicted and observed 
streamflow hydrographs is displayed, enhancing the user's perception o f the 
goodness o f fit o f the chosen solution. 

• Robustness evaluation o f selected solutions. The user can select a region 
containing potentially good solutions and carry out a "negative G A " search. 
This essentially allows the user to search for the worst solution in the selected 
region instead o f the best (thus, for a maximization problem, the user chooses to 
minimize the objective instead). This method allows the user to evaluate the 
robustness o f solutions in the selected region as the l ikely worst solutions can be 
generated (and again highlighted using the clustering technique). The user needs 
to keep in mind that the same limitations such as being trapped in local optima 
apply to the negative GA search as to the positive. However, because o f the low 
number o f solutions generated in each run, the user can quickly build up a 
picture o f the robustness and nature o f the landscape using all the interactive 
tools described above. 

The system has been applied to the multiobjective optimization o f the design o f biaxial 
columns (Rafiq et al. 2006a), and to investigate the single objective function calibration 
o f a simple time-series model o f rainfall-runofF (Packham et al. 2004; 2005). 

In this paper the GA search was carried out using the single objective functions 
(equations 1 and 2) in turn as fitness measures and also using a weighted average fitness 
measure given by: 

Fitness = w^RMSE + wiRMSshpe (6) 
where wi and W2 are weightings. Weights between 0 and 1 such that w\ + W2 =1 were 
used in this study. It should be emphasized that this weighted fitness measure is only 
used in the system to facilitate the selection operators in the GA. As an entirely 
separate operation to the GA fitness calculation, the system can evaluate and visualize 
the associated spaces for any number o f objective functions. Depending upon the 
number o f objectives, these can be included in the weighted fitness measure used for the 
selection mechanism in the GA in equation 6, such that the total o f the weights equals I . 
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However, for a large number o f objectives it may be preferable to use a subset in the 
weighted fitness for the GA search and calculate the remaining functions for 
visualization purposes only. 

Clustering Technique 
There are many clustering techniques that have been developed for various applications 
and they can be sensitive to certain parameters (Jain et al. 1999). The aim o f clustering 
in this case is to identify high performance regions o f a search space as generated by the 
GA with minimal computation time and parameter setting. Such data tends to contain 
dense regions where the GA has converged, but may be incomplete due to the 
characteristics o f the search. Future runs could fill in the missing data; therefore it is 
not necessary to find the 'true' clusters using Euclidean distance. Instead, a simple 
clustering technique was developed that combines the density information fi-om the 
either the parameter or objective space with the fitness o f the solutions. 

A fu l l explanation and description o f the clustering technique used is given in Packham 
and Denham (2003). In summary, a univariate kernel density estimate (Silverman 
1986) o f each variable is made and the minima from each estimate are computed. The 
bounds o f each cluster are thus identified in each variable. The first cluster chosen (to 
be displayed to the user) is that containing the highest fitness fi-om the GA, this data is 
removed and the second cluster identified is that wi th the fittest individual o f the 
remaining data, and so on. 

Clustering can be performed in either parameter or objective space using the univariate 
kernel density estimation procedure described. The clustering itself is an aid to 
visualization o f the high performance regions o f the search space, not part o f the search 
itself (although could be used in this way i f it was deemed useful). The user can 
manually create and modify the clusters generated, hence the interaction o f the user is as 
important ( i f not more so) than the definit ion o f the clusters in this system. 

After some investigation o f the parameters used in kernel density estimation (such as 
the type o f kernel used, number o f points along each variable and smoothing 
parameter), diose that produced the widest and most generic clusters were chosen for 
this visualization system (Packham et al. 2005). These were found to suff iciently 
highlight the important regions for most continuous problems (theoretical and practical). 

The Rainfall-Streamflow Model and Calibration Data 
The conceptual rainfall-streamflow model used in this study was the SLXPAR model 
(Gupta 1982) which is a reduced parameter version o f the Sacramento soil moisture 
accounting model, SAC-SMA (Bumash et al. 1973), and is described in f u l l in Gupta 
and Sorooshian (1983). The simplif ied model shown in Figure 1 permits testing o f the 
calibration system and comparison with the results o f Duan et al's (1992) study o f the 
global optimization o f conceptual rainfal l-runoff models. 

Fig 1 about here 
In outline the model consists o f an upper soil water storage layer (of maximum capacity 
U M ) , which is supplied by the daily rainfall. The outf low fi-om this store occurs as 
interflow (controlled by a recession constant, UK) or percolation into a lower soil water 
store (controlled by a partitioning parameter. A , which determines the separation o f 
percolation into actual and potential rates; and a parameter X which controls the degree 
o f nonlinearity o f the percolation process). Excess precipitation (once the upper zone is 
fu l l ) becomes runoff. The lower store has a maximum capacity B M and the baseflow 
rate is controlled by a recession constant, BK. Evapotranspiration and channel flow 
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routing are not simulated for simplicity. For comparison with Duan et al's (1992) study 
the same 200 day synthetic daily series o f precipitation and streamflow for a known set 
o f parameter values was used. Similarly the same constraints were applied to the 
permitted ranges for each parameter value, as shown in Table I . 

Table 1 
Guidance on the selection o f the length and characteristics o f calibration and 
verif ication data for operational rainfall-streamflow models may be found in Yapo et al 
(1996), 

Demonstration of the Interactive Calibration System 
Note that the interactive visualization system was designed for maximization problems 
so negative values o f RMSE, RMSslope and hence Fitness were used in the rainfal l-
streamflow calibration. As a means o f comparing the best solutions obtained using 
different objective functions the commonly used Nash-Sutcliffe efficiency, NSE (Nash 
and Sutcl i f fe 1970), has been evaluated for presentation in this paper by: 

NSE = \ (7) 

where is the average observed streamflow. 

Figure 2 shows 2-D scatter plots o f the parameter subspaces from a 20 generation run o f 
the visualization system with the RMSE used as the GA fitness function in (a), and the 
RMSslope used as fitness in (b). The user can choose the order o f the axes to view 
different subspaces in the main plot, as necessary. 

Fig 2 
The scatter plots show all the solutions obtained by the GA. The automatic clustering 
algorithm generates 2 clusters o f the fittest solutions over the entire parameter range 
(the number o f clusters is set by the user). These clusters are shown as highlighted 
points ( in different colors: the main (first) cluster is shown in green (the light points in 
Figure 2); the second cluster is shown in blue (the darker points); and the remaining 
solutions are shown in grey. For the RMSE fitness function (Figure 2(a)), the system 
identif ied 70 solutions in the first (fittest) cluster, 14 o f which had an equivalent NSE o f 
at least 0.999. The best solution found had LHVI = 16.815, U K = 0.325, B M = 12,065, 
B K = 0.227, A = 0.665, and X = 0.537, which is somewhat remote fi-om the global 
solution (re. Table 1). The second cluster had 24 solutions, 10 o f which had an 
equivalent NSE between 0.996 and 0.998, the best of which was relatively far fi*om that 
in the first cluster wi th U M = 30.046, U K = 0.231, B M = 3,486, BK = 0.055, A = 0.627, 
a n d X = 1,635. 
For the RMSslope fitness function (Figure 2(b)), the system identified different clusters 
to those for the RMSE fitness, but, again, the best solutions fi-om each cluster were far 
apart f rom each other. The equivalent NSE values o f the best solutions were in the 
range 0,998 to 0.999. It is clear that there is considerable spread in the good solutions 
over the parameter subspaces, consistent with the existence o f different regions o f 
attraction (convergence) wi th multiple local optima found by the computationally-
intensive visualizations undertaken by Duan et al (1992). Furthennore the different 
clusters for the 2 objective functions illustrate the effect that the choice o f single 
objective functions has on automatic calibration. 

One o f the sets o f multi-objective results is shown in Figure 3 for a 20 generation run 
using equation 6 wi th w\ = 0.4 and W2 = 0.6 to calculate the fitness for the GA search. 
Figure 3(a) shows all the solutions obtained in the 2-D parameter subspaces and Figure 
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3(b) shows 3-D function spaces o f 2 clusters o f good solutions found by running the 
automatic clustering algorithm. 

Fig 3 
With the combined objective functions, the clustered solutions also included the region 
o f attraction around the global parameter set. The model output for the best solution 
obtained can be rapidly displayed by the user (by right cl icking with the mouse on the 
highlighted point) as displayed in Figure 4. At the display scale o f Figure 4 the 
observed and predicted flows appear almost coincident. The zoom facil ity o f the system 
allows the user to investigate the quality o f the fit more closely. It should be noted that 
the daily rainfall and streamflow rates are expressed in terms o f equivalent water depth 
over the contributing watershed area, commonly used in streamflow modeling, and are 
given in inches/day (where I inch/day = 25.4mm/day) to be consistent with the units 
used in Duan et al's (1992) SIXPAR model and original data. 

Fig 4 

In order to investigate the relationships between the parameters, the clustered solutions 
from the multi-objective search can be visualized in a parallel coordinates plot, as 
shown in Figure 5. 

Fig 5 
This indicates the range o f values for each parameter associated with the region o f good 
solutions. The results for the 2 clusters show the significant differences between the 
parameter sets for similar fitness measures, which can be an indicator o f model 
structural error. However these plots have the limitation o f being di f f icu l t to interpret 
when a large number o f solutions are displayed. 

The best solutions identified for a 20 generation run o f the mult i objective system with a 
range o f weighting factors between 0 and 1 used in equation 6 are summarized in Table 
2. 

Table 2 
The results show that where the RMSE objective dominates the Fitness (i.e. for wi > 0.5 
and W2 < 0.5) the 20 generation GA search does not identify the region o f attraction 
around the global optimum parameter set. This illustrates the positive influence o f the 
new RMSslope objective function on the effectiveness o f the calibration-support 
system. 

The results shown in Table 2 indicate the need for the user to test the effect o f different 
weightings on the identification o f clusters. For the model and data used in this study, 
the results highlight the existence o f multiple parameter sets o f similar fitness because 
many conceptual models are subject to over parameterization, parameter interaction and 
poor sensitivity. From a practical viewpoint the decision o f which o f the similar-fitness 
parameter sets constitutes an acceptable calibration w i l l depend upon validation o f the 
selected model with further observed data. This is important given that the user w i l l not 
know whether the system has identified the true global optimum parameter set ( i f such a 
single set exists for a given model and data). The benefit o f the interactive system 
based on visualization is that the user can rapidly test the influence o f the fitness 
weightings and explore the regions o f attraction identified by the clustering. In this way 
the system allows the user to discover the nature o f the search space. This knowledge 
can assist the user in evaluating whether the selected conceptual model is appropriate 
for the application or i f a different model should be tested. 

The user-directed interactive search capability o f the system is demonstrated in Figure 
6(a) where the user has selected a region around the best solution identified from the 
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initial clustering (for the case with W] = 0.4 and = 0.6). A ftjrther 20 generation GA 
search was carried out within this region where the parameter ranges were constrained 
by the boundaries of the selection box drawn by the user by simply using the mouse. 
The automatic clustering algorithm has been run to generate a cluster of the fittest 
solutions over this zoomed region, which is shown in Figure 6 (b). 

Fig 6 
From the fittest solution identified in this zoomed region, the best parameter set is 
converging towards the global, with UM = 9.546, UK = 0.499, BM = 20.226, BK = 
0.208, A = 0.319, and X = 2.702, and an equivalent NSE of 0.9999. Given that a total 
of 40 generations of a 100 member population was run using the GA (i.e. 4100 model 
simulations, including evaluating the initial population of solutions) the system has been 
effective in locating the region of the global solution without the computational expense 
of a large number of model runs, hi order to investigate the robustness of this region 
aroimd the best parameter set found so far, the user can run a "negative GA" search (i.e. 
minimization rather than maximization). A filter was applied to the system to identify 
the top 10% of solutions within the best cluster (i.e. closest to the global parameter set 
found so far). A 20 generation "negative GA" was then run within this refined cluster. 
Figure 7 shows clusters of least f i t solutions following a negative GA search together 
with the top 10% of solutions. The plot provides an approximate evaluation of the 
robustness of the best parameter set found so far by using the visual representation of 
the distance between the clusters of good and poor solutions. This information is 
valuable as it aids the user in deciding whether to continue with a refined search in this 
region for the best parameter set, or to continue to interact with the system and search in 
a different part of the space. Once the user has decided upon a promising convergence 
region then a more detailed search can be undertaken (possibly using a gradient based 
technique) without wasting computational time. Additionally, the negative GA search 
tool helps identify ranges for each parameter value which tend to produce sub-optimal 
calibration within the region around the best-so-far solution. By retaining these poor 
solutions (as different colored clusters) the user can avoid selecting sub-optimal regions 
when interactively exploring the parameter space within the visualization system. 

Fig 7 

Conclusions and Further Work 
The application of a user-driven calibration-support system to the SIXPAR conceptual 
rainfall-streamflow model using synthetic data has been shown to be effective. The 
system was able to locate the region containing the global parameter set with a 
relatively modest number of model runs. This is important to hydrological modelers 
when calibrating high dimensional operational models with long data records (e.g 8 
years) because of the large number of function evaluations required. Rapid sampling 
and clustering procedures, coupled with a range of high dimensional visualization 
techniques, promote the user's understanding of the complex nature of the parameter 
space, without excessive computational overheads. The system was able to display the 
existence of major convergence regions, local optima, and parameter interaction. The 
interactive features of the system allowed the user to select regions of the parameter 
space that the initial GA run had identified as potentially good calibration sets. 
However, the user is still free to select other regions on the basis of their experience of 
the calibration of a given model and knowledge of a particular watershed. The 
efficiency of the system was also shown by the facility to make an initial assessment of 
the robustness of the region around a potential parameter using a "negative GA" search. 
This allowed rapid sampling of the low fitness parameter sets without the need for 
computationally expensive model evaluation along a fine grid of values of each 
parameter. Consequently the user can quickly decide whether to continue refining the 

374 



search of a particular region of the parameter space or to return to one of the other 
clusters of good solutions. 

The effect of the choice of objective functions on the calibration performance was 
demonstrated. A novel objective function, the RMSslope that represents the changing 
slope of the streamflow hydrograph was proposed. When used singly with an initial 20 
generation GA search, the RMSE and RMSslope objective functions identified different 
optima but failed to fmd the global solution. However, when combined as a weighted 
sum, the region of the global solution was detected, particularly where the RMSslope 
dominated the fitness function. The interactive nature of the system allowed the user to 
exploit the knowledge revealed by the automatic clustering technique and select a 
promising region for further exploration, leading to convergence towards the global 
solution. The combination of search efficiency, visualization and interaction is valuable 
both for the novice and the experienced hydrological modeler. Thus the system could 
be used as a decision support tool for the calibration of conceptual rainfall-streamflow 
models by practicing engineering hydrologists or as a teaching aid for hydrology 
students. 

The standard GA has been used in this visualization system and in the results presented. 
These GA runs could also be performed in alternative coordinate systems (such as the 
principal components of previously generated data (Packham and Denham (2003)). It 
would be also be possible to replace the standard GA with one known to perform well 
on calibration problems, such as SCE-UA (Duan et al, 1992). I f such a technique was 
implemented in the system and complemented by an appropriate clustering mechanism, 
it could be very effective in revealing the contours of the search space to the user., 

The use of the system with an operational rainfall-streamflow model on a physical 
watershed with alternative objective functions to the RMSE, such as the HMLE 
(Sorooshian and Dracup 1980) to account for nonstationary variance in observed 
streamflow data, is the subject of ongoing research. 
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Notation 
The following symbols are used in this paper: 
n = the number of daily streamflow values used in the calibration; 
qobs,i = the observed streamflow at time /; 

= the average observed streamflow; 

q, = the streamflow at a particular time, /; 
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qt{0) = the streamflow predicted by the model at time /; 
A/ = the timestep ( I day for the daily time series used); 
w\,W2 = weightings. 
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Table 1. True parameter values used to synthesize streamflow data and ranges 

Parameter True Value Lower Bound Upper Bound 
UM 10 0 50 
UK 0.5 0 1 
BM 20 0 50 
BK 0.2 0 1 
A 0.31 0 1 
X 3 0 10 

Table 2. Best solutions identified from first cluster for different weighting factors used 
in evaluation of multiobjective Fitness (equation 6) 

W2 UM UK BM BK A X NSE 
0.1 0.9 9.937 0.454 19.951 0.206 0.300 4.850 0.9997 
0.2 0.8 9.866 0.542 19.621 0.209 0.287 5.936 0.9997 
0.3 0.7 10.535 0.432 16.105 0.237 0.362 1.470 0.9989 
0.4 0.6 12.899 0.439 16.916 0.208 0.242 1.260 0.9995 
0.5 0.5 10.929 0.487 19.761 0.182 0.312 3.631 0.9995 
0.6 0.4 25.305 0.250 .2.524 0.392 0.237 7.192 0.9988 
0.7 0.3 28.393 0.249 2.214 0.149 0.358 5.788 0.9991 
0.8 0.2 30.136 0.236 4.664 0.013 0.733 7.814 0.9988 
0.9 0.1 10.076 0.480 17.257 0.241 0.653 1.503 0.9991 

True solution: 10.000 0.500 20.000 0.200 0.310 3.000 1.0000 
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Figure 1: Schematic structure of SIXPAR model 
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Figure 2: 2-D scatter plots of parameter subspaces 
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385 



by OrtginalVteaMM 
user around first cluster 

to 15 2b 25 30 35 40 45 
UM 

Ong.nal 
OS 
04 

oi; 
ir~20 30 

I on 

A 

-3 -2 -1 
•RMSC 

(a) User selected region around initial 
best solution 

Figure 6: Interactive search capability 

(b) Cluster of best solutions identified 
in selected space 

386 



Cluster of least 
fit solutions 

0 7 . 

0.6. 

^ 0.5, 
CO 

0.4-

0 .3 , 

0 2 , 

1 ^ 

Best solution 
so far 

Figure 
within 

7: Clusters of best and worst solutions following "negative GA" search 
user-selected region 

387 


