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Learning and Co-operation in Mobile Multi-Robot Systems 

Alexis John Kirke 

Abstract 

This thesis addresses the problem of setting the balance between exploration and 

exploitation in teams of learning robots who exchange information. Specifically it looks at 

groups of robots whose tasks include moving between salient points in the environment. 

To deal with unknown and dynamic environments, such robots need to be able to discover 

and learn the routes between these points themselves. A natural extension of this scenario 

is to allow the robots to exchange learned routes so that only one robot needs to learn a 

route for the whole tearn to use that route. One contribution of this thesis is to identify a 

dilemma created by this extension: that once one robot has learned a route between two 

points, all other robots will follow that route without looking for shorter versions. This 

trade-off will be labeled the Distributed Exploration vs. Exploitation Dilemma, since 

increasing distributed exploitation (allowing robots to exchange more routes) means 

decreasing distributed exploration (reducing robots ability to learn new versions of routes), 

and vice-versa. At different times, teams may be required with different balances of 

exploitation and exploration. The main contribution of this thesis is to present a system for 

setting the balance between exploration and exploitation in a group of robots. This system 

is demonstrated through experiments involving simulated robot teams. The experiments 

show that increasing and decreasing the value of a parameter of the novel system will lead 

to a significant increase and decrease respectively in average exploitation (and an 

equivalent decrease and increase in average exploration) over a series of team missions. A 

further set of experiments show that this holds true for a range of team sizes and numbers 

of goals. 
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Chapter I 

Introduction 

1.0 Multi-Robot Systems 

The field of robotics has evolved successively over the last half-century. Initially 

robots have been controlled by humans. Later robots which can control themselves have 

been introduced; and in recent years the idea of the robot controlling/interacting with other 

robots, or a Multi-Robot System (MRS), has begun to receive a great deal of attention. 

Self-controlled robots introduce the obvious benefits of autonomy, and Multi-robot 

systems also introduce a number of benefits. Some of these are given in [Arkin and Balch 

1997]: 

4P Distributed Action: Many robots can be in many places at the same time 

* Inherent Parallelism: Many robots can do many, perhaps different, things at the same 

time 

9 Divide and Conquer: Certain problems are well suited for decomposition and allocation 

among many robots 

* Simpler is better: Often each agent in a team of robots can be simpler than a more 

comprehensive single robot solution 
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Another three reasons to study multi-robot systems can be added, from [Parker 1996], 

[Beckers et al 1995] and [Dautenhahn 1995]: 

* Increased Robustness: Multiple robots increase reliability, since if one robot breaks 

down the other robots may still be able to finish the task 

* Emergence of ordered behaviour: The social insect model is an existence proof that 

many simple agents can exhibit complex group behaviour, i. e. perform a complex task 

together 

1, Social robotics: The population of autonomous mobile robots will grow rapidly in the 

near future, thus implying a necessity for studies of interaction and co-ordination 

strategies amongst them 

A number of potential applications have been suggested which can utilise the 

advantages of multi-robot systems. These applications include mine sweeping, multi- 

satellite defence systems, maintenance work and decommissioning in nuclear power plants, 

planetary exploration, lunar base construction, janitorial work, transportation of heavy or 

difficult loads, robot "platoons" (both on land and underwater), clean-up of toxic waste, 

search and rescue missions, and security, surveillance, and reconnaissance tasks. 

One further reason to study multi-robot systems is to facilitate the search for the 

emergence of human-like intelligence in individual robots. "Social" Intelligence is the 

intelligence required for an animal to deal efficiently with other members of its species. 

The Social Intelligence Hypothesis [Dautenhalm 1997] is a hypothesis from primate 

psychology that states that primate intelligence "originally evolved to solve social 

problems and was only later extended to problems outside the social domain. " This implies 
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that social intelligence may be a pre-requisite for human-like intelligence. Thus, if we hope 

to ever be able to produce truly autonomous robots with human-like intelligence, the 

studies of multiple robot interaction should run in parallel with single-robot research. 

1.1 Mobile Multi-Robot systems 

It will be noticed that the majority of applications listed in the last section required 

the use of mobile robots. As a result the vast majority of studies in multi-robot systems 

have concentrated on mobile robots. This thesis will also concentrate on mobile multi- 

robot systems. It will now be seen that there are two fundamental tasks a mobile robot can 

perform. 

1.1.1 Fundamental Abilities For Mobile Robots 

There are two fundamental types of abilities for mobile robots [Yoshimura, et al. 

1996]. The first is point-to-point motion - moving from position A in the space to position 

B. This would be needed in a transportation goal ("go to A and get a load to take to B"), or 

for a remote stationary goal ("go to B and press the red button). The second fundamental 

task is sweeping - moving so as to cover as much of the space as possible. This would be 

needed in mine sweeping, mapping unknown environments, or waste clearing. 

There have been approximately equal amounts of work done on multi-robot 

sweeping, e. g. [Goldberg and Mataric 1997] [Ichikawa and Hara 1996] [Yamaguchi and 

Beni 1996] [Fontan and Mataric 1996][Beckers et al 1995][Werger and Mataric 

1996][Unsal and Bay 1994] [Arkin 1992][Sugihara and Suzuki 1990], and on multi-robot 

point-to-point motion, e. g. [Alarni et al 1997][Premvuti and Yuta 1996][Li 1994][Wang 

and Premvuti 1994][Noborio 1994][Caloud et al 1990][Buckley 1989][Hennan and Albus 

1988][Erdmann and Lorano-Perez 1987]. This thesis will continue the trend of past work in 
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separating the two types of task and choosing to concentrate on one of them. Specifically it 

will look at the point-to-point task. (Though it will be seen later that sweeping tasks are 

needed when learning point-to-point tasks. ) It will now be seen that there are 5 basic types 

of point-to-point tasks. 

1.1.2 The Five Types of Interaction in Point-to-Point Tasks 

Looking at the past work above it is possible to divide the potential interactions of 

robots in point-to-point tasks into five varieties: 

1. TaskAssignment: Distributing point-to-point goals around the team so they are achieved 

efficiently e. g. [Brummit and Stentz 1996][Ohko et al 1993][Li 1994][Asama et al 

1992][Caloud et al 1990][Herman and Albus 1988][Elgimez and Kim 1990] 

2. Environment Resource Sharing: Sharing the space resource so as to avoid collisions or 

"traffic jams" while multiple robots perform separate point-to-point tasks, e. g. [Alami et 

al 1997][Premvuti and Yuta 1996][Aguilar et al 1995][Wang and Premvuti 1994b][Li 

1994][Ota et al 1994][Noborio 1994][Wang 1993][Caloud et al 1990][Buckley 

1989][Erdmann and Lozano-Perez 1987] 

3. Environment Information Sharing: Sharing by communication the map information that 

robots have about how to move between points e. g. [L6pez de Wntaras et al 

1997][Asaina et al 1992][Herman and Albus 1988] 
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4. Direct Imitation: Imitating each others' routes through physical following e. g. [Billiard 

and Dautenhahn 1997][Demiris and Hayes 1996][Bakker and Kuniyoshi 

1996][Dautenhahn 1995][Hayes and Demiris 1994] 

5. Robot Cues: Robots becoming stationary "beacons" which other robots can move 

towards, e. g. [Bison and Trainito 1996][Vainio et al 19961 

It can be seen that more work has been done on the first and second types of interaction 

than on the other three. The last three types are actually conceptually related. Environment 

Information-Sharing is a form of "remote" imitation, just as imitation is a form of 

physically-grounded information-sharing. Also a robot becoming a beacon causes other 

robots to "imitate" it in the sense that robots move towards it, i. e. move to the same point 

as the beacon robot has moved. The beacon robot is also providing information by 

communicating that "this is the place to be". 

1.1.3 Distributed Environment Information Sharing 

This thesis will be concerned with the third type of point-to-point task: enviromnent 

information sharing by communication. In particular it will look at distributed systems for 

map sharing. The only past work involving distributed systems for map sharing that I am 

aware of, [Asama et al 1992], does not detail or analyse the system involved. [Lopez de 

Mantaras et al. 1997][Herman and Albus 1988] give more detail about their sharing 

systems, but they are not distributed systems since they are based around a central agent. 

This concentration on distributed systems will be because they are more robust than 

centralised systems. 
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This disadvantage of centralised systems has been widely discussed and these 

discussions will be reviewed in the next chapter. However, the disadvantages of distributed 

map-sharing in map-learning MRS have not been highlighted or examined. 

1.2 Potential Problems of Map Sharing in Learning MRS 

As far as I am aware, no work has been done at all on the potential disadvantages of 

introducing map information sharing to distributed map-learning systems. [L6pez de 

MAntaras et al 1997][Herman and Albus 1988] involve systems for map-sharing in a 

learning MRS, but do not address any of the potential problems of map-sharing in the 

learning context. 

The primary original contribution of this thesis will involve highlighting a potential 

problem of map-sharing in learning MRS. Such a problem needs to be addressed because 

of the desirability of continuing to use learning and map-sharing MRS. So before 

describing the potential problem, the advantages of learning/map-sharing MRS over non- 

leaming MRS will be discussed. 

1.2.1 The Advantages of Learning in Mobile MRS 

An important use of mobile robot systems is their deployment in environments too 

hazardous or inaccessible to humans[Barnes et al 1997][Parker 1994], for example 

planetary exploration, nuclear plant decommissioning, disaster recovery, etc. If the robots 

are navigating autonomously, and the environment is too hazardous to have been mapped 

accurately by humans (or has become too hazardous to re-map since the last mapping by 

humans - leading to an uncertainty as to its current state) then the robots will need to 

develop their initial model through learning. In this case, a learning multi-robot system 

with enviromnent infonnation sharing has a clear speed advantage over a single learning 
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robot. It will take much longer for a single robot to learn a complete model of the 

enviromnent than for a number of robots to Icam a distributed model which they can share 

to achieve goals (since multi-robot systems are more efficient at sweeping tasks than a 

single robot). 

1.2.2 Learning in Dynamic Environments 

Another reason for the importance of learning is that the world is constantly 

changing; therefore for many tasks a mobile multi-robot system will not be able to cope 

unless it can deal with a dynamic environment. The robots' model of the environment must 

be constantly updateable through leaming. This idea suggests that robots need to be able to 

adapt to the environment at the same time as achieving goals. So learning and goal 

achievement need to occur simultaneously. This is known as On-line Learning. The name 

derives from the idea of not having to take an agent "off-line" from its task achievement 

when it needs to learn new information. Recognition of these advantages has led to most 

learning MRS involving on-line learning - e. g. [Sen 1996][Ota et al 1994][Parker 

1996] [Ueyama et al 1994] [Mataric 1994]. 

1.2.3 The Exploration vs. Exploitation Dilemma 

An important area of study in on-line learning algorithms is the Exploration vs. 

Exploitation Dilemma[Kaebling and Moore 1996][Thrun 1992]. This dilemma will be 

described in some detail, as it is directly related to the potential problems of learning in 

map-sharing MRS. 

The Exploration vs. Exploitation Dilemma concerns the trade-off between learning 

how best to achieve goals and achieving goals. Suppose an on-line learning mobile robot is 

introduced to a new enviromnent with a goal to get to a salient point, say A. Moving 
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randomly it finds and learns a route R from its introduction point, H, to A.. Suppose that at 

a later time it is at H and is given the goal A again, should it immediately follow the known 

route R to its goal? Or should it experiment with a different route in case it finds a shorter 

one? If there is a much shorter route and the robot sticks with R, then it is doing the task 

less efficiently than it could. But if it tries to find a shorter route r and fails, then it will 

have increased the time it takes to get to A, thus reducing efficiency. This trade-off is 

unavoidable, hence the label "dilemma". This dilemma implies that the relative importance 

of exploration and exploitation of knowledge for a particular set of tasks must be decided. 

1.3 The Distributed Exploration vs. Exploitation Dilemma 

Having addressed above the advantages of learning, particularly on-line leaming, in 

multi-robot systems, the potential problem mentioned in Section 1.2 will now be 

introduced. This problem is a multi-robot version of the Exploration vs. Exploitation 

Dilemma discussed in Section 1.2.2 above. This problem will be introduced through an 

example: 

Robots 1,2 and 3 are put in an unknown environment with goals to get to salient 

points A, B, C and D. Yhey start at a home position H (say a re-charger). "en they are 

given the goals they will try to find them - but since they have no knowledge of the space 

they will initially have to move randomly, keeping a lookoutfor goals, and learning as they 

go. Suppose Robot I finds A and then finds B, then it will have a map with routes H->A 

andA->B. Similarly, suppose Robot 2finds the routes B->C and C->D. Since I and 2 can 

share their maps with each other and with 3, all the robots can now achieve their goals 

without learning any more routes and return home until they are given more goals. Yhis 

will include Robot 3, which can achieve its goals without contributing any information to 
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the distributed map. In particular, because these routes are now available through 

communication, no robot will bother trying to learn them by experience, thus reducing the 

chance ofanother robotfinding a shorter more ejficient version. 

The only way to make robot 3 try to learn alternative shorter versions of a route is to 

withhold transmitting older versions of the route to it; but this will slow down goal 

achievement - thus leading to a dilemma. So the exploration vs. exploitation dilemma in 

multi-robot systems has two aspects: 

* The standard exploration vs. exploitation: how do individual robots balance their 

exploration of the enviromnent with their exploitation of their knowledge? 

9 The distributed exploration vs. exploitation problem: How do robots balance the quick 

achievement of goals through map-sharing with the learning of shorter routes by 

distributed learning? 

In the same way that the owner of a robot must decide on how to set its balance in the 

exploration vs. exploitation dilemma, so the owner of a robot team must decide how to set 

the balance in the distributed exploration vs. exploitation dilemma. 

1.4 The Original Contribution of this Thesis 

As a result of the introduction of on-line learning into mobile map-sharing multi- 

robot systems there is a new issue to deal with - the distributed exploration vs. exploitation 

dilenima. The identification of this issue is in itself an original contribution. However, the 
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main original contribution of this thesis is to address this problem, proposing and testing a 

method for the team owner to set the balance between exploration and exploitation. 

As far as I am aware this problem has not been addressed in past MRS work., The 

closest problem that has been studied previously is the Coverage/Interference trade-off in 

foraging tasks. By increasing the number of robots the coverage of the environment is 

increased, thus decreasing the time taken to find items to be foraged. However, studies 

have shown that increasing the number of robots too far can lead to too much interference 

between the robots, thus slowing down the foraging process[Arkin 1992][Beckers et al. 

1995]. Another related piece of work is [Mataric 1994] which touches on the single robot 

exploration vs. exploitation dilemma in a multi-robot sweeping-based task. 

1.5 Thesis Overview 

In this chapter the evolution of robotics towards multi-robot systems and the 

reasons to study such systems have been discussed. The thesis has focused on mobile MRS 

and listcd 5 basic tasks for a mobilc MRS, picking out the point-to-point map sharing task 

as a preferred area of study. The advantages of learning in such point-to-point tasks have 

been discussed, as has the importance of on-line learning in real world dynamic 

environments. The key contribution of the thesis was then introduced: a system for setting 

the trade-off between learning and task-achievement in learning MRS. 

This contribution is significant because learning, and particularly on-line learning, 

provides great advantages for MRS, and therefore the setting of the trade-offs in such 

learning is important. It was shown to be original because such trade-offs have never been 

discussed in the context of multi-robot systems - only the Coverage/Interference trade-off 

and single-robot exploration vs. exploitation problem has been addressed. 
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The next chapter (chapter 2-A Review of Multi-Robot Systems) will look at the 

ma or properties of mobile multi-robot systems and classify systems into sub-areas. It will i 

go on to look at some examples of mobile MRS, and related work in Multi-Agent Systems. 

Chapter 3 (Method) analyses the problem of the distributed exploration vs. 

exploitation dilemma and proposes a solution for setting the balance between distributed 

exploration and exploitation. It then introduces a simple robot model which this solution 

will be implemented on to be tested. 

Chapter 4 (Results and Discussions) details the experiments used to test the 

proposed solution, presents the results, and discusses the degree of success the solution 

shows. 

Chapter 5 (Conclusions and Future Work) reviews the thesis, and discusses 

possibilities for future work. 
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Chapter 2 

A Review of Mobile Multi-robot Systems 

This chapter consists of a review of mobile multi-robot systems and a brief review 

of related learning multi-agent systems (MAS). The review of MRS will first present an 

outline of Multi-Robot Systems, from simple "collective" systems to full communicating 

environment-learning peer-evaluating systems. It will then look at examples of these 

systems and how they relate to the system studied in this thesis. The review of Multi-Agent 

Systems will concentrate on two systems involving peer-evaluation. 

Multi-Robot Systems can be divided up into 2 main areas: Collective Robot 

Systems, and Model-based Systems. First Collective Systems will be examined. 

2.1 Collective Robot Systems 

The inspiration for "Collective" robot systems comes from two areas: behaviour- 

based robotics and differentiative societies. The first of these areas deals with the design of 

simple but effective robots, and the second with the fact that many simple agents can 

perform a complex group task. 

2.1.1 Behaviour-based Robotics 

In the Behaviour-based paradigm[Brooks 1990] a robot has a group of simple 

reactive behaviours. Each behaviour is triggered by a simple sense stimulus, and there is a 

hierarchy of behaviours - certain behaviours over-ride others (for this reason the 

architecture is called the Subsumption Architecture). One example is Brooks' robots "Tom 

and Jerry" which have three behaviours: Wandering, Following and Obstacle avoidance. 
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When no other behaviour is active, the robots wander around randomly. If an obstacle is 

encountered, the obstacle avoidance behaviour over-rides the wandering, and the robot 

avoids the obstacle. Then the wandering behaviour takes over again. If a moving object is 

detected, the robot follows the object, with the obstacle avoiding behaviour taking over as 

necessary. Such behaviour-based systems have exhibited limited intelligence, even though 

they have no model of the environment. In fact, it was a reaction against the use of explicit 

enviromnent-models that caused the popularity of behaviour-based systems. 

2.1.2 The Social Insect Model 

The second inspiration for Collective robotics comes from the Differentiative 

Societies of nature[Parker 1994]. Ant, Termite and some Bee and Wasp societies are 

Differentiative[McFarland 1993]. In these societies an individual insect has the best chance 

of propagating its own genes by ensuring the survival of particular relatives (e. g. a queen). 

Thus all insects work together for the good of the colony: "the individual exists for the 

good of society, and is totally dependent on that society for its existence. "[Parker 1994] 

This 'working together' is based on very simple, genetically hard-wired, local interactions. 

When many insects interact - even in this simple way - structured and "intelligent" 

behaviour can emerge. Examples are termite nest building, ant foraging and body 

collection[Beckers et al 1995], and bees searching out a food source[Kelly 19951. 

It will now be seen how the social-insect model and behaviour-based robotics are 

combined to inspire Collective Multi-Robot Systems, or Collective Robotics. 
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