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STUDY OF TRACE ELEMENT DETERMINATION BY ION
CHROMATOGRAPHY WITH CHEMILUMINESCENCE DETECTION.

Hugh Graham Beere

ABSTRACT

This thesis details the development of several highly sensitive liquid chromatography post-
column reaction detectors based on chemiluminescence (CL) for the ion chromatography (IC)
determination of metal species in a range of sample types.

The first chapter describes a non-selective multi-element CL detector based on metal-ligand
reactions involving cobalt (II) and EDTA. A complexation reaction was designed so that
eluting metal species displaced or produced equivalent amount of free cobalt ions which then
catalysed the CL oxidation of luminol. The effect of pH, temperature and reaction time was
investigated and optimised. It was found that the detector responded to a wide range of metals
capable of forming EDTA complexes, even the relatively weak complexes such as those of
magnesium and calcium, However, problems with the high back-ground signal limited
sensitivity to the low

ug I'' range.

The next chapter deals with the development of a highly sensitive IC method for the
determination of two environmentally important chromium species, namely chromium (III) and
chromium (VI). A rapid ion exchange separation was achieved using a single column with
potassium chloride eluent. This was incorporated into a luminol-H,0, CL detector, specific for
chromium {III). On-line reduction was required in order to visualise the chromium (VI).
Detection limits for chromium (111} and chromium (V1) wer 0.05 pg I and 0.1 ug 1"
respectively. Good results were obtained with a freshwater standard reference material and
Iyophilised samples as part of the author’s participation in a Bureau Communtaire de reference
(BCRY) certification exercise. Sample pH was found to have considerable influence on the
stability of the species and this is described and discussed.

The third and largest part of the study involved the development of an IC system for the ultra-
trace determination of silver in pressurised water reactor (PWR) primary coolant, of particular
concern to the nuclear power industry. A novel ion exchange separation was achieved on
hydrophillic resins giving excellent separation trom divalent cations. A CL post column
reaction detector was designed based on the oxidation of luminol with persulphate. Good
quantitative performance was accomplished based on the analysis of a certified reference
material and simulated PWR coolant with detection limit for silver of 0.05 pg I".

Finally, a CL detection system was developed for determining gold (III) after 1C separation. A
novel aspect was that no added co-oxidant was required for the luminol reaction. Results for a
standard reference metal alloy sample was in good agreement with the certified value, Again,
high sensitivity was achieved with a detection limit of 0.25 pg 1",
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CHAPTER ONE.

1.0 INTRODUCTION
1.1 Trace Elemental Analysis

Trace analysis has now come to mean the low level determination of analytes, although
the term was first used in the 1950’s to describe determination of analytes in plant
material at the limits of detection of the techniques then available. Detection limits
were generally 0.1 mg I to 10 mg I"'. The methods available at present far exceed the
limits of detection shown by earlier methods, thus detection below 0.1 mg I is often

referred to as ulira-trace analysis.

Grasselli (1) describes how the detection limits, analysis time and sample size has
decreased over the last forty ycars since the introduction of instrumental techniques into
analytical chemistry. This is illustrated with a presentation of lead determination over
this period, in which the detection limits of the techniques used up until 1970's would

be incapable of detecting lead at present Federal guideline concentrations (American)

(1).

Lead is not the only element of concern in the environment, its non-essential nature has
made it easier to determine toxic effects. However, essential metals can also exhibit
toxicity if present at elevated concentrations, for example the presence of iron (II) in
high concentrations gives rise to siderosis whilst decreased concentrations can lead to

anaecmia. The effects of essential trace metals in biological systems is more complex




than that of non-essential metals as there are upper and lower limits on the acceptable
levels which vary from metal to metal. The role of metals in biological systems and
metabolism is slowly being understood. Apart from biological considerations there is
tremendous interest in trace element determination connected with many industrial
processes, not only the process itself but also in waste management. Two diverse
examples iliustrate this point from the semiconductor and nuclear industries. However,
there is a need in industry and waste management to determine trace element levels in a

wide variety of complex matrices.

The electronics industry based upon silicon semiconductor technology uses very high
purity compounds which are doped with various elements to modify characteristics.
The presence of contaminants such as iron, copper and nickel at sub ng g level may
alter semiconductor performance (2). High purity quality control is required in related

industries eg. fibre optic, synthetic gem stone and pharmaceutical industries.

The nuclear industry is also concerned about trace element contamination. Secondary
coolant circuits in Pressurized Water Reactors (PWRs) contain trace impurities which
can concentrate to form corrosive brine, corroding the secondary circuit especially in
the steam generator. The steam generator is housed in the reactor building where it
interfaces, out-of-core, with the primary coolant circuit, Figure 1 (3). Replacement of
corroded parts of the secondary circuit in this area is expensive as il requires the shut-
down of the reactor and working time is limited because of the radioactive environment
(4, 5). Radioactivity in this out-of-core area is affected mainly by the radiation emitted
by trace impurities in the primary coolant (4). The primary coolant circuit of PWRs is

constructed from specialist materials which are chosen for their resistance to corrosion.






















































































































































































































































































































































































































































































































































































































































































































































































































