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Abstract: This paper presents numerical simulations of particle advection in the bend of an open channel containing groynes, which 
is an idealised form of a shallow river bend in a wide river. The flow field is computed using a boundary-fitted solver of the non-
orthogonal, curvilinear shallow water equations. The computational grid is generated by solving Poisson-type elliptic partial 
differential equations using an iterative multi-grid scheme for prescribed boundary coordinates. The shallow water equations are 
discretised with finite differences in space, and 4th order Runge-Kutta integration in time. Tracers introduced at specific initial 
locations have their trajectories computed using Lagrangian particle tracking. The numerical shallow flow model is verified by 
comparison to the analytical solution of fully developed flow in an open channel. The combined shallow flow and Lagrangian 
particle-tracking model is then used to simulate the advection of tracer particles in a rectangular channel containing a pair of parallel 
groynes, and tracer particles in a curved open channel containing groynes, of dimensions roughly equivalent to a Danube river bend.  
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Introduction 
 Curved lateral boundaries and morphological 
features in a river affect the flow, and may reduce 
flood capacity at a river bend after increased runoff 
from extreme rainfall and snowmelt events. Enhanced 
sedimentation may occur at river bends due to 
increased depositional processes as a flood subsides. 
Moreover, river sediment deposited after flood 
inundation may have major societal, economic, and 
environmental repercussions, and so is an important 
factor in flood risk management.  In practice, groynes 
are used to trap river sediment, prevent bank erosion, 
and attenuate the flow in large rivers[1]. Although 
groynes have advantages regarding reduced flood risk, 
they are expensive to construct and maintain, and can 
affect navigation because of flow separation leading to 
the formation of turbulent eddies and larger-scale 
recirculation zones. It is therefore a challenge for 
engineers to design groynes that control the river, 
while meeting flood risk, navigation and economic 
cost objectives. A particular case of interest is the 
Danube River in Europe, where the advection and 
dispersion of sediment particles is known to be 
particularly complicated in the vicinity of groynes[2] 
and other hydraulic control structures[3]. In large 
rivers, mixing occurs as a combination of local 
advection and dispersion processes that are enhanced 
in strongly sheared flows, such as turbulent eddies 

generated by flow separation at obstacles such as 
bridge piers and projecting groynes, and by the roll-up 
of bed boundary layer into hairpin vortices.  Species 
transport is greatly affected by mixing, and influences 
water quality[4].  Field observations, laboratory 
studies, and numerical simulation all offer insights 
into advection and mixing processes in large rivers[1].   
 Over the past forty or so years, considerable 
effort has gone into the development of river flow 
models that can accommodate complicated domains 
with curved and/or irregular boundaries.  A variety of 
grid generation methods have been proposed[5] 
including structured rectangular and curvilinear, 
boundary-fitted grids, unstructured grids, sliding 
grids. Of the various methods available for grid 
generation, structured boundary-fitted grids are 
particularly appealing for shallow water applications 
in domains where the flow boundaries conform 
approximately to smooth curves. Boundary-fitted 
grids are generated by mapping an arbitrary-shaped 
domain onto a simple rectangular shape, or a series of 
interconnected rectangles[6]. Johnson and co-
workers[7-8] developed the first solvers of the shallow 
water equations on orthogonal grids. Borthwick and 
Barber[9] solved the non-orthogonal shallow water 
Stokes equations with Cartesian velocity components 
for jet-forced flow in a circular reservoir.  Curvilinear 



 

grid approaches are used routinely nowadays for 
simulations of shallow flow hydrodynamics by means 
of single layer and multi-layer models, such as 
encapsulated in Delft3D for example. 
 Meanwhile particle-tracking methods, which 
involve the introduction of discrete particles into the 
flow domain and the numerical integration of the pure 
advection equation, have also been extensively 
utilised in water quality modelling of large rivers.  In 
the context of chaotic advection near a groyne 
structure, Weitbrecht et al.[3] used 2-D particle 
tracking to examine advection in a rectangular channel 
flow with groynes. From a laboratory perspective, 
Zsugyel et al.[2] utilised PIV to examine the nonlinear 
trajectories of particles near a groyne in a rectangular 
channel. 
 The present study uses a curvilinear shallow 
flow numerical solver to simulate steady state flow 
fields in a curved open channel, and, with the aid of 
bilinear interpolation of the velocity field, uses 
Lagrangian particle tracking to simulate advection and 
mixing processes in the vicinity of a groyne inserted 
in the channel bend.  The dimensions of the channel 
and groyne, and the flow conditions, are selected to be 
roughy similar to those in an idealised bend of the 
River Danube in Hungary.  The paper is structured as 
follows.  Section 1 describes the boundary-fitted grid 
generator.  Section 2 presents details of the finite 
difference numerical solver of the curvilinear shallow 
water equations.  Section 3 summarises the particle-
tracking methodology.  Section 4 presents results 
obtained of simulations of flow around a channel 
bend, and particle advection in the bend.  The main 
conclusions are listed in Section 5. 
   
1. Boundary-fitted grid generator 
 The boundary-fitted grid generator involved 
iterative solution of a pair of elliptic partial differential 
equations derived from the following Poisson 
equations that map between the Cartesian and 
curvilinear coordinate systems[6]: 
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where x and y are Cartesian co-ordinates in the 
physical plane, ξ and η are curvilinear, boundary-fitted 
coordinates in the transformed plane, and P and Q are 
expressions used to concentrate  ξ – lines and  η – 
lines, if required.  Using the chain rule, the governing 
Poisson equations are transformed from the Cartesian 

system to the curvilinear, boundary-fitted system 
where the boundaries form a rectangle in transformed 
system. Letting ),( ηξfx = and ),( ηξgy = , then the 
Jacobian of x and y with respect to ξ  and η  is 
denoted by ( )

( )ηξ ,
,

∂
∂= yxJ  .  The resulting 

transformed grid generation equations are: 
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in which 
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The elliptic grid generation equations (3-4) are solved 
as a boundary value problem, after discretization using 
second-order central differences and rearrangement to 
give:  
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where the subscripts i and j denote nodal positions in 
the transformed mesh, and the transformed mesh 
incremental lengths Δξ and Δη are taken to be unity 
for convenience. In order to generate the grid, 
Equations (5-6) are solved iteratively using the multi-
grid technique[10], with boundary values prescribed as 
coordinates demarking the channel walls and open 
boundaries.   
 
2. Shallow water equations 
 The shallow water equations are commonly 



 

used to model free surface, environmental flows 
where the depth is shallow, waves are long, and 
vertical motions of the water are sufficiently small that 
they may be neglected (i.e. hydrostatic pressure is 
assumed).  The shallow water equations may be 
derived by depth-integration of the Reynolds-averaged 
continuity and Navier-Stokes momentum equations 
that are obtained from mass and momentum balances 
across an elemental volume. We denote the total depth 
as h = hs + ζ, where hs is the still water depth and ζ is 
the free surface displacement in the vertical direction 
above still water level. Defining z as the vertical 
elevation above still water level, the continuity 
equation obtained as the incompressible version of the 
mass conservation equation is depth-integrated from 
the bed at z = -hs  to the free surface at z = ζ, giving 
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where u , v  and w  are the Reynolds-averaged mean 
fluid velocity components in the Cartesian x, y and z 
directions. Introducing depth-averaged velocity 
components in the Cartesian x, y directions (satisfying 
the first mean value theorem of integration), 
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and applying Leibnitz’s formula for differentiation of 
an integral, and applying free surface and bed 
boundary conditions, the mass conservation shallow 
water equation is obtained as: 
 

0)()(
=

∂
∂

+
∂

∂
+

∂
∂

y
Vh

x
Uh

t
ζ               (9) 

 
in which t is time. Similar depth-integrations are 
performed to derive x and y shallow water momentum 
equations, as follows. The depth-integrated form of 
the Reynolds-averaged Navier-Stokes momentum 
equations may be expressed 
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where f is the Coriolis coefficient, xxσ ′ and yyσ ′  are 

deviatoric stress components, and yxτ , zxτ , xyτ and 

zyτ  are shear stress components, ρ  is the density of 
water, and p is the pressure. Application of the 
Leibnitz rule and the kinematic bed and free surface 
boundary conditions gives (after some manipulation), 
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and 
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in which τwx , τwy are the surface (wind) stress 
components, and  τbx , τby are bed stress components 
(which are usually evaluated using empirical friction 
formulae). The dispersive terms, ( ) zUu
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exchanges due to the depth-averaging process.  Their 
effect is usually expressed by means of momentum 
correction factors, 1β  , 2β  and 3β  which can be 
calculated for a given boundary layer profile for u  
and v , and then subsumed into the corresponding 
advective acceleration term to give 
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where primes indicate fluctuating velocity 



 

components. To simplify the analysis, effective 
stresses may be defined as 
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The effective stresses have two terms: the first relates 
to viscous stresses, the second to the turbulent 
Reynolds stresses. Replacing the Reynolds stresses by 
the Boussinesq approximation, the effective stresses 
become (noting that ε >> ν, and making an 
approximation for the depth-averaged eddy viscosity) 
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Substituting for the effective stresses, invoking the 
dynamic pressure boundary condition that the pressure 
at the free surface is atmospheric, and assuming a 
hydrostatic pressure distribution with depth, we obtain 
the shallow water momentum equations, as  
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where g is the acceleration due to gravity, wxτ  and 

wyτ are the wind stress components in the x and y- 

directions, bxτ  and byτ  are the bed stress components 
in the x and y- directions.   
 The chain rule is used to transform the 

shallow water equations (9), (15a), and (15b) from the 
Cartesian (x, y) system to the curvilinear (ξ, η) system, 
following Thomson et al. [6]. The basic transformation 
relations may be written: 
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where  f   is a differentiable function of x and y,  J  is 
the Jacobian, and subscript notation is used for 
differentiation. The transformed shallow water 
equations are then obtained[9] as: 
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The transformed shallow water equations are solved 
on a boundary-fitted grid, whose lines are defined 
such that ξ  = iΔξ  and η  = jΔη , where i = 1, 2, … 
imax and j = 1, 2, … jmax, Δξ  and Δη  are grid 
intervals in the ξ - and η -directions, and time t = kΔt.  
The transformed shallow water equations (17), (18a) 
and (18b) are discretized using second-order finite 



 

differences in space and a fourth-order Runge-Kutta 
scheme in time. The discretized version of the 
transformed equations may be summarized as follows: 
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With a suitable initial flow field and appropriate 
boundary conditions (slip conditions for walls, and 
prescribed (Dirichlet) or transmissive (van Neumann) 
conditions at open boundaries, the numerical model 
marches forward in time evaluating the finite 
difference form of the right hand side of equations 
(20), (21a), and (21b). The fourth-order Runge-Kutta 
scheme is used to carry out the time integration 
implied by the right hand side of the equations. 
 
3.  Lagrangian particle tracking 
 The Lagrangian particle-tracking scheme 
simply involves numerical integration in time of the 
following advection equations 
 

dt
dy

v
dt

dx
u p

p
p

p == ,                             (22) 

 
where (up, vp) are the Cartesian components of 
velocity of a particle located at (xp, yp).  In the present 
work, it is assumed that each particle is a passive 
tracer that moves with exactly the same velocity as the 
underlying flow.  Bilinear interpolation, described in 
detail in the companion paper[11], is used to evaluate 
velocity components in continuous space from the 
discrete, grid-based velocity components predicted by 
the shallow flow solver.  Equation (22) is integrated 
forward in time using a fourth-order Runge-Kutta 
scheme, also outlined in the companion paper[11].   

The scheme has already been validated for the chaotic 
advection caused by a pair of blinking vortices[11], 
with close agreement obtained against analytical 
solutions evaluated by Aref[12]. 
 The Lyaponov exponent may be evaluated as 
a measure of mixing, after computing the mean 
particle separation distance of an initial array of 
particles as it evolves in time. In the present work, 
particles that have north and south adjacent particles 
are first selected. Then the mean particle separation is 
estimated, and plotted against time.  
 

4. Results 
 4.1 Particle mixing in a rectangular channel 
containing a pair of parallel groynes 
 The coupled shallow water and particle-
tracking model was used in the companion paper[11] to 
simulate particle advection in a rectangular open 
channel of length 3600 m, width 300 m, and mean 
depth 1 m, which contains a pair of groynes.  At the 
inlet open boundary, the velocity is set to 0.5 m/s.  
The eddy viscosity coefficient is 0.5 m2/s throughout 
the domain.  The computational grid is 360 (stream-
wise) by 30 (transverse), the time step is 5 s, and the 
total flow simulation time is 4000 s.  Here, we extend 
the results to examine mixing processes by 
quantifying the degree of particle spreading with time. 
Fig.1 shows the mean particle separation distance as a 
function of time obtained for 54,000 particles that are 
initially uniformly spaced throughout the domain in 
red, blue, magenta, green, and yellow bands of equal 
width spanning the channel from south to north (for 
more information, see Fig. 9a of the companion 
paper[11]). It is clear that the purple and green layers 
achieve the highest rates of dispersion.  This is 
because they coincide with the wavy shear layer that 
is produced at the tips of the groynes, where the flow 
separates, and the mean flow drives recirculating 
zones in the lee of each groyne.  
 
4.2 Shallow flow model of idealised Danube River 
bends 
 The capability of the curvilinear shallow flow 
model to produce sensible flow hydrodynamics 
around an idealized bend was verified by considering 
idealized cases of shallow flow around 90o and 180o 
bends of inner radius r0 = 1000 m and outer radius r1 
= 1500 m, with inlet and outlet stems both of which 
are 2000 m long and 500 m wide. The water depth is 3 
m, water density is 1000 kg/m3, eddy viscosity is 9.3 
m2/s and there is no wind stress present. Fig. 2 shows 
the physical domains and the corresponding 100 x 100 
grid used in both cases. The time step is 5 s, and the 
total simulation time is 5000 s. Steady-state is 
achieved by t ~ 2500 s.  An analytical solution exists 
for streamlined flow around a circular bend. 



 

 

 
 

Fig.1 Mean particle separation distance as a function of time 
for a rectangular channel containing two groynes and initially 
filled with particles that are uniformly distributed in coloured 
bands. 
 

 

  
 
Fig.2 Computational domains comprising 100 x 100 cell 
boundary fitted grids for 90o and 180o circular bends in open 
channels with inlet and outlet stems 
 
Along the circular bend, the radial and tangential 
velocity components, ru and θu , are related to their 
Cartesian counterparts, u and v, by.  
 

θθ sincos vuur +=               (24a) 
 

θθθ sincos uvu −=                                                   (24b) 
 
where θ is the polar angle. In the case of flow around 
a circular bend, a parabolic velocity distribution across 
the channel is obtained analytically, corresponding to 
fully developed flow in a channel[13] such that:  
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where uI is the mean flow speed at the inlet and  'r  is 
the distance measured radially from the midpoint of 
the channel. Fig. 3 presents numerical predictions and 
analytical solutions of the steady-state velocity vectors 
and velocity magnitude contours for fully developed 
shallow flow around a 90o bend, with inlet and outlet 
stems.  Fig. 4 shows the corresponding results 

obtained for the 180o bend. In both cases, the model 
predictions and analytical solutions are in reasonable 
agreement. 
 

 
 
Fig.3 Shallow flow around 90o bend, with inlet and outlet 
stems: (a) predicted and (b) analytical steady-state velocity 
vectors; (c) predicted and (d) analytical velocity magnitude 
contours. 
4.3 Particle mixing in a groyned open channel bend 
 The coupled curvilinear shallow flow and 
particle-tracking model is next used to study tracer 
advection in an open channel comprising a 90o bend 
with inlet and outlet stems. The bend has interior 
radius of 3300 m and an exterior radius of 3600 m. 
Both stems are 3600 m long and 300 m wide.  The 
inlet flow velocity is set at 0.5 m/s, the downstream 
water depth to 1 m, and the eddy viscosity is 0.5 m2/s.   
 

 
 
Fig.4 Shallow flow around 180o bend, with inlet and outlet 
stems: (a) predicted and (b) analytical steady-state velocity 
vectors; (c) predicted and (d) analytical velocity magnitude 
contours. 



 

The combined grid consists of a rectangular portion of 
360 x 30 grid points covering the inlet stem, a 472 x 
30 boundary-fitted grid for the circular bend, and a 
further 360 x 30 grid for the outlet stem.  Stable 
results are achieved using a time step of 5 s, and 
steady state is reached well before the simulation ends 
at 5000 s.  Two cases are considered involving a pair 
of groynes projecting out from the channel wall into 
the mainstream: one where the groynes are located in 
series along the inner boundary; the other where the 
groynes are staggered with the upstream groyne 
projecting from the inner wall, and the other with the 
groyne projecting from the outer wall.  

Fig.5 shows the steady state velocity vectors 
in a portion of the river bend for the first case where 
the two groynes are located in series.  Recirculation 
zones occur in the lee of each groyne. From the 
Lagrangian particle-tracking model, it is possible to 
observe the effect of these recirculation zones on the 
trajectories taken by tracer particles. Fig.6 shows the 
dispersive transport of three bands of coloured tracers 
introduced immediately upstream of the first groyne, 
at 1000 s intervals after the initial release until 5000 s 
is reached.  The green particles are advected rapidly 
by the through-flow beyond the ends of the groynes, 
whereas the blue particles are pulled towards the inner 
wall under the unfluence of the recirculation zone.  
The red particles creep across the first groyne and 
some become trapped within the recirculation zone.  
Fig.7 shows that similar results are obtained when the 
colour bands of tracer particles are introduced 
between the first and second parallel groynes. Here 
particles accumulate in the recirculation zone and 
particles are trapped by gyres downstream of the first 
groyne.  Figs 8, 9 and 10 present the corresponding 
results obtained for the second case, when the groynes 
are arranged in a staggered configuration.  Fig.8 
shows the steady state velocity vectors. Flow 

separation occurs at end of each groyne, creating 
recirculation zones that serve to trap particles. Figs 9 
and 10 provide further visualizations of the tracer 
particle distributions when introduced as coloured 
arrays arranged in bands that are initially in front of 
the first groyne (Fig. 9) and between the two groynes 
(Fig. 10).  Results are presented at intervals of 500 s 
after the initial release until 2500 s. In the case of 
alternate groynes, the tracer particles are not trapped 
for as long as for the case of parallel groynes, and tend 
to be washed downstream except for those closest to a 
lateral wall.  
 
 

 
 
Fig.5 Predicted steady state velocity vectors in an open channel 
bend with two parallel groynes projecting from the inner 
boundary wall. 
 
 



 

 
 
 
 
 
 
 
 

 
Fig. 6 Particle advection in an open channel bend with two 
parallel groynes, particles introduced immediately upstream of 
the first groyne at times: (a) t = 0 s, (b) t = 1000 s, (c) t = 2000 
s, (d) t = 3000 s, (e) t = 4000 s, and (f) t = 5000 s. 

 
 

Fig.7 Particle advection in an open channel bend with two 
parallel groynes, particles introduced between the first and 
second parallel groynes at times: (a) t = 0 s, (b) t = 1000 s, (c) t 
= 2000 s, (d) t = 3000 s, (e) t = 4000 s, and (f) t = 5000s 
 
 



 

 
 

Fig.8 Predicted steady state velocity vectors in an open bend 
with two groynes projecting alternately from the inner and 
outer walls of the bend. 
 
 
 

5.  Conclusions 
 A primary reason for providing flood 
protection systems along rivers is to reduce flow 
speed and dissipate energy in the main channel 
through flow control devices.  This paper has 
considered shallow flow in an idealised, curved open 
channel geometry representative of a Danube River 
bend.  A coupled numerical model based on a 
boundary-fitted, curvilinear shallow flow solver and 
Lagrangian particle-tracking scheme predicted the 
shallow flow hydrodynamics in a curved open 
channel, and evaluated mixing of tracer particles.  The 
model was applied to mixing in a rectangular channel 
containing two groynes in series oriented 
perpendicular to a lateral wall, showing that particles 
in the through-flow beyond the ends of the groynes 
mix less than those caught up in the shear layers and 
recirculation zones produced by the groynes.  Close 
agreement was obtained between numerical and 
analytical predictions of the steady state velocity 
profiles produced by fully developed flow in a large 
bend, in the absence of groynes.   
 

 
Fig.9 Particle advection in an open channel bend containing 
two alternate groynes, particles introduced immediately 
upstream of the first groyne at times: (a) t = 0 s, (b) t = 500 s, 
(c) t = 1000 s, (d) t = 1500 s, (e) t = 2000 s, and (f) t = 2500s 

 
 
 
 



 

 
 

 
Fig.10 Particle advection in an open channel bend containing 
two alternate groynes, particles introduced between the first 
and second parallel groynes at times: (a) t = 0 s, (b) t = 500 s, 
(c) t = 1000 s, (d) t = 1500 s, (e) t = 2000 s, and (f) t = 2500s 
 
The coupled model was then applied to two cases of 
groynes in series and staggered configurations along 
an open channel bend.  Use of bands of coloured 
particles highlighted the trapping effect of 
recirculation zones immediately behind the groynes.  
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