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Reinforcement learning models make use of reward prediction errors (RPEs), the difference between an
expected and obtained reward. There is evidence that the brain computes RPEs, but an outstanding
question is whether positive RPEs (“better than expected”) and negative RPEs (“worse than expected”)
are represented in a single integrated system. An electrophysiological component, feedback related
negativity, has been claimed to encode an RPE but its relative sensitivity to the utility of positive and
negative RPEs remains unclear. This study explored the question by varying the utility of positive and
negative RPEs in a design that controlled for other closely related properties of feedback and could
distinguish utility from salience. It revealed a mediofrontal sensitivity to utility, for positive RPEs at 275-
310 ms and for negative RPEs at 310-390 ms. These effects were preceded and succeeded by a response
consistent with an unsigned prediction error, or “salience” coding.
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Dopamine

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The function of a brain is to monitor its owner's environment,
responding to events to increase the chance of survival and
reproductive success. Brains receive a stream of sensory informa-
tion of near infinite detail and the brain is a costly organ to run.
Given that most environments show a degree of stability, an
efficient neural response to this stream of information is to form
expectations based on reliable environmental cues and to respond
only to deviations from those. Such deviations are known as
prediction errors. These have been argued to provide a common
basis for computation in perceptual, attentional, cognitive, and
motivational processes (den Ouden, Kok, & de Lange, 2012). In
particular, deviations of reward from an expected quantity, that is
reward prediction errors (RPEs), have been shown by formal
models (Sutton & Barto, 1998) to be important terms in reinforce-
ment learning, and there is strong evidence that RPEs are coded in
the primate midbrain (Schultz, 2010).

An event related potential (ERP) component known as feedback
related negativity (FRN) occurring at mediofrontal sites at 200-
350 ms has been proposed to encode an RPE carried from the
midbrain to the anterior cingulate cortex (San Martin, 2012; Walsh
& Anderson, 2012; Yu & Zhang, 2014). The FRN is so named
because it exhibits a relative negativity for worse than expected
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outcomes. However, this does not necessarily mean exclusive, or
indeed any, sensitivity to negative reward prediction errors
(—RPEs). The methodology in which the FRN emerged was based
simply on comparing —RPE outcomes to +RPE outcomes; as such
the negativity observed is merely relative and might equally have
its basis in a positive voltage shift for +RPE outcomes. In fact,
competing claims have been made in this regard, with some
arguing that the FRN is preferentially sensitive to +RPEs (Cohen,
Elger, & Ranganath, 2007; Eppinger, Mock, & Kray, 2009; San
Martin, Manes, Hurtado, Isla, & Ibanez, 2010) and others arguing
greater sensitivity to —RPEs (Bellebaum & Daum, 2008;
Bellebaum, Polezzi, & Daum, 2010; Pfabigan, Alexopoulos, Bauer,
& Sailer, 2011). In Fig. 1a and b we schematically represent these
two possible response functions. Fig. 1c shows the response
function of a component that codes both +RPEs and —RPEs
(“integrated coding”), and Fig. 1d a response function to unsigned
prediction errors (UPEs), that is to the absolute size of the
prediction error irrespective of its valence. While this last response
function has been plotted against RPE utility like the others, this
merely represents how it would behave in an experiment studying
RPEs, the component is not coding RPE utility at all but the quite
different properties of UPE size. Such a component might serve a
general function of registering motivational salience (Bromberg-
Martin, Matsumoto, & Hikosaka, 2010).

A challenge for FRN research is that the post-feedback wave-
from may comprise a number of different components with
different reponse functions that at least partially overlap. One
danger is that this overlap, rather than merely obscuring the
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Fig. 1. A schematic representation of possible response functions to RPE utility.
“Response” is generic and could refer to increase in single cell firing rate, BOLD
activation, or amplitude increase for either a positive or negative going ERP
component. In the specific case of the FRN the y axis corresponds to positivity of
voltage. (a) coding of +RPE utility only, (b) coding of —RPE utility only, (c)
“integrated” coding of the utility of all RPEs, and (d) coding of UPE size, or
“salience”. EV=expected value, i.e. an RPE utility of zero.

individual components, has the capacity to synthesise entirely
artefactual response functions. For example if a UPE size response
function (Fig. 1d) overlies an integrated RPE response function
(Fig. 1c) the sum effect in the EEG will be a spurious response
function corresponding to Fig. 1a, a +RPE encoder. Where tem-
poral and spatial overlap of such components is perfect, this
problem is insoluble for the ERP methodology. However, even
when two components might in principle be temporally dissoci-
able, in practice this distinction may fail to be made since
components are generally quantified over a relatively wide inter-
val of 100 ms or so, a problem we address in the present
experiment.

The example of a spurious +RPE encoder given above is
topical. The recent trend in FRN research, following Holroyd,
Pakzad-Vaezi, and Krigolson (2008), has been to claim that the
FRN is solely responsive to +RPEs, despite the clear loss of
adaptive value this would hold relative to an integrated RPE coder.
Tellingly, there has also been recent growth in the number of
papers claiming that the FRN does not code RPE utility at all and
that is in fact just a UPE size response (Hauser et al., 2014; Oliveira,
McDonald, & Goodman, 2007; Talmi, Atkinson, & El-Deredy, 2013).
If the post-feedback waveform comprises an early UPE size
response closely followed by an integrated RPE utility response
then an interval of measurement that catches part of both these
responses will generate the spurious +RPE encoding response
function as described.

The approach we took in the present study was therefore to
quantify components according to the activity present in actual
data using a “bottom-up” strategy, rather than imposing a possibly
misguided interval of measurement (on which there is little
agreement in the literature). We also depart from the tendency
in FRN studies to represent RPEs as categorical levels such as “large
good outcomes” vs. “small good outcomes” so that they can fit into
a factorial design. This limitation belies the essentially continuous
nature of RPEs. In our experiment we manipulated RPEs as a
continuous independent variable, analysing the effect of RPE
utility on voltage by correlating the two variables. Where the
correlation between these two values was found to be significant,
it could be assumed that voltage was influenced by RPE utility,

thus indicating the presence of an RPE encoding component. This
relatively novel technique has been used by Hauk, Davis, Ford,
Pulvermuller, and Marslen-Wilson (2006). The appropriateness of
correlation coefficients for answering our research question can be
readily appreciated by a glance in Fig. 1. The response functions
there are schematic; however with the addition of a scatterplot of
data points, each subplot might as easily represent two lines of
best fit (one for +RPEs and one for —RPEs) set end to end, with
the closeness of scatter on each line corresponding to two
correlation coefficients for the responsiveness of voltage to +RPEs
and —RPEs respectively.

Practically, identification of RPE encoding components in the
post-feedback waveform, and elucidation of their response func-
tions were achieved in two stages, as follows. Separate correlations
of voltage with +RPE utility and —RPE utility were calculated at
each time point on the post-feedback waveform. Separating the
two kinds of RPE at the correlation stage was essential: if the
correlation were calculated over the full range of RPEs then a
significant positive value (for example) of Pearson's r would leave
us uninformed as to whether we were observing a response
function corresponding to Fig. 1a, b or c. Having generated running
correlation coefficients over the post-feedback waveform, these
were clustered into discrete intervals which were tested for
significance using the procedure of Maris and Oostenveld (2007).
This showed us the intervals where —RPE and +RPE encoding
was occurring, but not the overall response functions in these
intervals. This was achieved in the second stage by considering
+RPE and —RPE encoding together and comparing the joint
activity to the response functions in Fig. 1. For example an interval
of the waveform where there was a strong correlation between
+RPE utility and voltage could be described as a +RPE encoder
only if there was no correlation between —RPE utility and voltage
in that interval. If there was in fact a same-signed correlation
between —RPE utility and voltage then this pattern of results
suggested an integrated encoder. If there was an oppositely-signed
correlation between —RPE utility and voltage in this interval then
this suggested a UPE size encoding.

These novel measures were designed to deal with the likely
presence of multiple components in the post-feedback waveform,
and maximise the possibility that they might be separated out to
their true response functions. An essential requirement of this
endeavour was that the experimental design should avoid con-
founds seen in the existing literature that may have served to
distort the apparent sensitivity of the FRN to +RPEs and —RPEs,
thus masking the FRN's true response function. One of these is the
domain of the outcome, that is, whether the outcome constitutes an
absolute loss or gain. There is substantial evidence from beha-
vioural economics (Kahneman & Tversky, 1979; Tversky &
Kahneman, 1992) that outcome domain is highly salient for
humans. In contrast, RPEs merely describe the difference between
an outcome's utility and its prior expected utility. The valence of
the RPE (+/—) is thus formally orthogonal to whether the out-
come constitutes an absolute gain or loss, that is whether the
outcome is a value greater or less than zero. A —RPE of —5¢ might,
for example, arise from making a gain of 20¢ when a gain of 25¢
was the expectation for that trial. Experiments on the FRN which
use “mixed gambles”, in which —RPEs are always losses and
+RPEs are always gains confound outcome domain and RPE
valence. For example, such a study might vary the utility of —RPEs
and +RPEs by manipulating the magnitude of outcomes as
follows: +25¢, +5¢, —5¢, —25¢ (in order of descending RPE
utility). Alternatively, the study might also achieve the same end
by giving rewards and punishments with different prior like-
lihoods as follows: +25¢ when reward was unlikely, +25¢ when
reward was likely, —25¢ when punishment was likely, —25¢ when
punishment was unlikely. In either of these two experiments, an
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apparent differential sensitivity to the utility of +RPEs and —RPEs
might simply arise from differential sensitivity to either gain or
loss outcomes generally. Indeed, in directly addressing sensitivity
of the FRN in the two domains, Kreussel et al. (2012), Kujawa,
Smith, Luhmann, and Hajcak (2013), Mushtaq, Stoet, Bland, and
Schaefer (2013), Sambrook, Roser, and Goslin (2012) and Yu and
Zhang (2014) have all shown a relative insensitivity to the utility of
RPEs expressed in the loss domain, with Holroyd, Larsen, and
Cohen (2004) finding non-significant results in the same direction.
This calls into question the validity of claims that the FRN is
insensitive to the utility of —RPEs given that much of this evidence
is based on mixed gambles. In the present experiment, expecta-
tions were manipulated in such a way that —RPEs and +RPEs
were both expressed as losses and gains half the time, recovering
the orthogonal nature of the relationship of outcome domain and
RPE valence.

A second important confound concerns whether outcomes are
deliveries or omissions. When FRN experiments do not use mixed
gambles they near-ubiquitously offer gambles in the gain domain
only and modulate RPE utility by whether a reward has been
obtained or not. Thus a likelihood-modulated FRN experiment
might offer outcomes as follows: 25¢ when reward was unlikely,
25¢ when reward was likely, nothing when non-reward was likely,
nothing when non-reward was unlikely; alternatively, a magni-
tude modulated FRN experiment would offer 25¢, 5¢, non-reward
(where the alternative was 5¢), non-reward (where the alternative
was 25¢). However, it has been argued that non-rewards are less
salient than rewards (Esber & Haselgrove, 2011). If this is so then
an apparent lack of sensitivity to the utility of —RPEs may occur
simply because they have been expressed as non-rewards. In the
present experiment there were no non-rewards: all outcomes
constituted deliveries of some numerical quantity, with —RPEs
being worse than expected quantities.

A third possible source of confounds surrounds the use of
reward likelihood (rather than reward magnitude) to manipulate
RPE utility. Although this has historically been the preferred
means of manipulating RPE utility in FRN experiments, unex-
pected events are known to have very strong effects in the time
course of the FRN (Folstein & Van Petten, 2008) and while
unexpectedness may play a formal role in dictating the utility of
RPEs, it is likely to bring with it substantial non-specific, alerting
responses. For this reason, the present experiment manipulated
RPEs using outcome magnitude rather than likelihood. Using
reward magnitudes of equal frequency preserves the formal
manipulation of RPE utility, but removes non-specific surprise
effects.

A related, though more insidious confound, may exist in the
form of perceptual mismatch between an expected, or hoped for
stimulus and the actual feedback. Jia et al. (2007) have shown that
a negativity is elicited in the FRN interval when a stimulus differs
from one predicted by a participant, regardless of whether match
or mismatch is the winning criterion, while Donkers,
Nieuwenhuis, and van Boxtel (2005) showed that when a stimulus
breaks a pattern with an ongoing sequence this leads to a net
negativity even when this mismatch denotes a positive outcome.
Based on informal questioning of participants in previous experi-
ments we find many claim to hold an internal representation of
the “winning stimulus” just prior to feedback. If this is typical,
then a negative peak attributed to the FRN may in fact partly
reflect a perceptual mismatch phenomenon. Because prediction
errors were a continuous variable in the present experiment we
expected this to undermine any habitual representation of a
discrete winning stimulus and so prevent the opportunity for a
mismatch component to be introduced for —RPEs specifically.

Our aim in this experiment was to isolate neural activity
associated with RPEs. Yeung, Holroyd, and Cohen (2005) have

observed that reinforcement learning experiments, in which
participants believe they are performing a feedback-guided learn-
able task, typically confound RPEs with error signals, that is, with
non-economic judgements of whether an error was committed. To
avoid this confound, participants in the present experiment were
explicitly told that outcomes were unrelated to their key presses.
Yeung et al. showed that while the FRN is reduced under such
conditions it is still present, and a number of other studies have
been able to demonstrate an FRN in conditions where participants
were aware that they could exert no control over an outcome
(Donkers et al., 2005; Donkers & van Boxtel, 2005; Holroyd,
Krigolson, & Lee, 2011; Marco-Pallares, Kramer, Strehl, Schroder,
& Munte, 2010; Potts, Martin, Burton, & Montague, 2006). We
nevertheless used a task that superficially resembled a reinforce-
ment learning task, in which participants selected from a choice of
icons, to facilitate comparison with the literature.

In summary, our motivation in the present experiment was an
attempt to separate components coding for+or — RPEs by using a
data-driven methodology that removed the need for fixed-interval
quantification, and the incumbent risk of combining components
within a single analysis window. The rationale for the design was
that it should avoid known confounds and that it should be able to
describe the relationship between RPE utility and voltage inde-
pendently for +RPEs and —RPEs and map these relationships onto
the canonical response function templates shown in Fig. 1:
describing the data as correlation coefficients served this purpose
well. Based on the extensive FRN literature, we hypothesised that
RPE utility encoding would be present (i.e. not just a UPE size
response), but we had no prior hypothesis regarding which of the
forms 1a-c this would take, nor when it would occur.

2. Methods
2.1. Participants

Sixty two undergraduates (9 left-handed, 22 male) participated for course
credit and the opportunity to win a small sum of money. Data from 7 participants
were rejected (five for equipment failure, two for eye blink artefacts on over 50% of
trials).

2.2. Task rationale

Prediction errors were manipulated using reward magnitude. Participants
undertook gambles in separate gain and loss domain blocks, hoping in gain domain
blocks to win money, and in loss domain blocks to avoid loss of money. A blocked
design was used for the domain variable since the study sought only to control, not
study, domain effects and it was believed that alternating domain on a trial by trial
basis would confuse some participants and reduce FRNs generally as feedback
stimulus-reward associations were continually being reversed.

On each trial, participants received feedback on the outcome in the form of a
number in a 60 point range (23-82) denoting the points won (gain domain trials)
or lost (loss domain trials). In each domain there were thus a range of 30 +RPE and
30 —RPE outcomes, independent of whether points were actually won or lost. The
principal variable of interest was RPE utility, that is, a signed value corresponding to
the difference between the actual points gained or lost on each trial and the
average and therefore expected value (52.5 points). Participants were not explicitly
informed that 52.5 was the expected value, in order to avoid the possibility that
they might impose a categorical good vs. bad discrimination at this point. It was
anticipated that exposure to the outcomes would fairly quickly allow the extraction
of expected value by any neural component devoted to this process, with the
uniform distribution of the 60 outcomes in each block helping in this regard.

2.3. Task procedure

The experimental task was presented using E-Prime software and is sum-
marised in Fig. 2. Participants were shown a graphic depicting four symbols and
selected one using a keypad. A fixation cross appeared (600-700 ms duration),
followed by the points won or lost on that trial (700 ms duration) and then a blank
screen (800 ms duration). Participants performed the task in 32 blocks of 60 trials
each. In every block each of the numbers 23-82 appeared once in a random order.
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Fig. 2. Summary of a single trial of the task procedure.

For half the participants the first 16 blocks were gain domain blocks, and the
second 16 were loss domain blocks, for the other half this pattern was reversed.
Participants were verbally informed at the change point. At the end of each block
participants were shown a number that was ostensibly, though was not in fact, the
sum of all the numbers that had been displayed in that block. If this fictional
number was greater than 3000, participants either won £2 (gain domain block), or
lost £2 (loss domain block); if the number was below 3000 there was no effect. In
fact the value of this fictional number was predetermined to be over 3000 half the
time in each domain for a net gain of £.00 across the experiment for this aspect of
the task. Participants were told (truthfully) that their key-presses were unrelated to
the outcome of the trial, and were told (untruthfully) that each trial was
determined by a random number generator set to return an average points value
of 3000 across each block (the value was in fact fixed at 3150, the sum of the values
23-82). It was explained to participants (again untruthfully) that each run of the
random number generator was independent, and so it was unknown how much
money they might make or lose on this aspect of the task: this was to encourage
interest in the feedback.

In order to motivate participants to pay attention, 10% of trials (192 trials) were
followed by a probe in which participants had 1 s to make a key press to indicate
what the number they had just seen was vs. a number one point higher or lower.
Participants lost £.01 with each failure. Since this could be done simply by stimulus
matching against the just departed stimulus, i.e. without processing magnitude, a
further probe was included. At the end of each block, before being told the points
total for that block, participants estimated whether the points total had exceeded
or fallen short of 3000 and were awarded £.20 each time this matched the reported
sum. Since the reported sum was, unbeknownst to the participants, fictitious and
randomly determined, participants could only perform at chance on this question
(50% average success rate): it was included merely to motivate attention to the
points awarded on each trial of the block that preceded the question. Participants
played 1920 trials in total, with a 30 s break between each of the 32 blocks. Total
earnings for the experiment averaged £2.91 per person (approximately $4.50).

At the conclusion of the experiment a check on participant preferences for
outcomes was made. Participants were asked to rate how happy they were to see
the outcomes 28, 38, 48, 58, 68 and 78 in each of the two domains by using a
mouse to place a mark on a continuous rating scale labelled at one end as “very
unhappy” and at the other end “very happy”. This process was repeated two further
times and an average was taken.

2.4. EEG recording

EEG data were collected from 11 actively amplified Ag/AgCl electrodes (actiCAP,
Brain Products, Gilching, Germany) mounted on an elastic cap. The electrodes were
Fz, FCz, Cz, CPz, Pz, F3, F4, FC3, FC4, FP1, and FP2. Electrodes were referenced to the
left mastoid and re-referenced off-line to the average of left and right mastoid
activity. Vertical eye movement was monitored by electrodes FP1 and FP2 and a
right suborbital electrode, and horizontal eye movement was monitored using an
electrode on the right external canthus. Electrode impedances were kept below
20 kQ2. EEGs were amplified using a BrainAmp amplifier (Brain Products), con-
tinuously sampled at 500 Hz, and filtered offline with a band-pass filter from 2 to
30 Hz designed to remove P3 effects. ERPs were computed by averaging artifact-
free EEGs (~86%=1650 trials). EEGs were rejected if eye movement electrodes
showed a voltage change exceeding 75 pv/200 ms or if any midline site showed
either a voltage change exceeding 20 pv/ms or exceeded a value of -+ 100 pv
relative to baseline. EEGs were time-locked to 200 ms before the onset of the
feedback to 700 ms afterward, and then were baseline-corrected using the interval
—100 to 0 ms.

2.5. EEG analysis

While feedback consisted of a single number, this could correspond to quite
different quantities depending on the economic terms by which it was evaluated.
These are laid out in Table 1. In order to analyse RPE utility effects, stimulus values
were recorded to the RPE utilities they represented as indicated in the table. This
resulted in a range of 60 utility values running from —29.5 to +29.5 that was
independent of whether the outcome constituted an actual loss or gain. Initial
factorial analyses of the FRN were performed by creating an average waveform for
bad outcomes from all —RPEs and good outcomes from +RPEs. The bulk of the
analysis was performed using correlations however, and these were performed
separately for —RPEs and +RPEs and individually for each participant. A Pearson
correlation coefficient between voltage and RPE utility was calculated at each time
point. Data points in this correlation corresponded to individual trials. Since each
participant saw an average of 1650 trials, of which half were +RPEs and half were
—RPEs, correlations were obtained from an average of 825 sample points. While
the RPE utility was fixed for a given trial, because the voltage varied over time, the
correlation coefficient on each trial therefore also varied by time. The correlation
coefficients were plotted against time to produce a figure which was analogous to
conventional ERP plots but which showed the strength of RPE encoding, derived
from the full range of utilities experienced, rather than actual voltage for a given
bracket of RPE utility (e.g. high) as would be used in a factorial design. The
interpretation of such a figure is straightforward: where the waveform is at
baseline there is no effect of the variable (RPE utility) on voltage, where there
are deviations from baseline this indicates a relationship, suggesting that RPEs are
being coded by voltage. In this respect, such a correlational waveform can be
interpreted as though it was in fact a traditional difference wave. Points on this
waveform showing significant deviations could then be found by conducting a one
sample t-test on the values of r (relative to an expected value of 0 under the null
hypothesis) at each time point over the 55 participants. To facilitate subsequent
Monte Carlo simulations the one sample t-test was implemented as a paired
samples t-test comparing a column of 55 observed values of r against a column of
55 expected values set to zero.

The multiple comparisons resulting from the analysis of the whole waveform
were addressed using a method based on the widely used cluster randomisation
procedure of Maris and Oostenveld (2007). This procedure allows analysis of the
entire ERP waveform without incurring the excess conservatism of a strict
Bonferroni correction for each time point analysed. It achieves this by recognising
that because voltages are strongly correlated at adjacent time points the effective
number of comparisons being made is much lower than the number of sample
points in the waveform.

In the first step of the procedure a one sample t-test on the values of r was
performed at each time point and in each electrode channel in the manner
described above, and used to identify significant (p <.05) t-values. Because of the
gradual growth and decay of the correlation coefficients both over time and space,
these significant t-values also occurred in clusters of time points and electrode
sites. Clusters were identified by finding significant t-values that were contiguous
in time or space (adjacent time points for the same electrode or electrodes within
4 mm of each other and at the same time point). Only clusters containing eight or
more samples (i.e. 16 ms) were considered for analysis. For each such cluster, a
cluster-level t-value was calculated as the sum of all single sample t-values within
the cluster. Analysis thereafter was based on these clusters and their associated

Table 1
Properties of feedback under different economic dimensions.

Feedback

Domain Stimulus RPE valence RPE utility UPE size

Gain 23 —RPE -295 29.5
24 —RPE —285 28.5
52 —RPE -5 )
53 +RPE 5 5
81 +RPE 28.5 28.5
82 +RPE 29.5 29.5

Loss 23 +RPE 29.5 29.5
24 +RPE 28.5 28.5
52 +RPE ) )
53 —RPE -5 5
81 —RPE —285 28.5
82 —RPE —29.5 29.5
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cluster level t-value, rather than the individual (and highly non-independent) t-
values derived from time x electrode points, reducing the multiple comparisons to
a manageable number.

Since cluster level t-values could not be tested for significance against a
standard t distribution, in step two of the procedure, the significance of each
cluster was calculated by comparing its cluster-level t-value to a Monte Carlo
generated distribution of cluster level t-values in the interval occupied by the
cluster. This was generated from 50,000 datasets that corresponded to the null
hypothesis. To create such a dataset, for each time point within the interval under
consideration, the 55 observed r values were paired with 55 expected values of 0,
but this time observed and expected values were switched for a randomly
determined number of subjects prior to running the t-test, ensuring a t-statistic
based on data corresponding to the null hypothesis. The process was repeated for
all time points in the interval under simulation and the t values were summed to
create a cluster level t statistic under the null hypothesis. Having generated 50,000
such cluster level t statistics, the p value of the actual observed cluster found in
step 1 was calculated as the proportion of the randomisation null distribution that
exceeded its cluster-level t statistic. A Bonferroni correction was then made such
that alpha was set t0.025 divided by the number of clusters found to be significant
at step one. The process was then repeated for the next cluster identified at
step one

3. Results
3.1. Behavioural data

Participants were found to answer the probe question correctly
on 73.87% of probed trials, with no significant difference in
accuracy between loss domain blocks and gain domain blocks
(paired samples t test: ts4 < 1). Preference data collected at the end
of the experiment showed a very high correlation between RPE
utility and rating (r=.91, p<.001, N=660). The relationship
between RPE utility and rating was the same for both gain and
loss domains as shown by very similar average beta values for
participant-wise regression of rating against RPE utility (mean 3
for gain=.93, mean f for loss=.94) with a paired samples t-test on
the beta values showing no significant difference (ts4 < 1). These
results indicate that participants attended to feedback and affec-
tively responded to it an appropriate way in both gain and loss
domains.

In order to prevent the experiment capturing reinforcement
learning effects, participants were told that there was no link
between their behaviour and the outcome of the trial. We checked
to see if their behaviour was consistent with this belief. Although
the outcome of trials was indeed random, this led to some icons
being more profitable on a given block than others and it is
possible that participants modified their choices on this basis. On a
participant/block basis, and after removing cases where icons
were never or always chosen by a participant, there was indeed
a correlation between the profitability of icons and the frequency
with which they were chosen (r=.04, p=.001, N=6880). We also
examined whether the RPE utility on a trial affected the likelihood
of switching to a different icon on the following trial and whether
this depended on the RPE valence. While intuitively the dependent
variable for this analysis would appear to be the decision to
switch, and the independent variables to be the RPE utility and
valence on the present trial (since these cause the switch), this
would result in a binary dependent variable, to be avoided when
using ANOVA. Thus, as ANOVA is indifferent to the temporal
relationship of the variables we allocated switching behaviour on
the next trial (switch vs. no switch) and RPE valence (+ vs. —) as
independent variables, and RPE utility on the current trial as the
dependent variable. The results showed that RPE utility was
indeed significantly lower on trials which were followed by a
switch of icons (Fji0ss04=7.74, p <.001, %> <.001). This utility
difference was greater for —RPE trials (.29 points) than for +RPE
trials (.03 points), producing a significant interaction term
(F1105504=4.97, p=.026, > <.001). Thus despite our instructions,
to some degree the participants appeared to regard the

experiment as a reinforcement learning task, and furthermore
showed different learning effects for rewards and punishment.
These effects, while significant, were of negligible size however, as
indicated by the small #? values. Moreover, the speed with which
icons were chosen following the presentation of the icon choice
array (interquartile range: 261-592 ms) suggests that for the most
part icons were regarded as unimportant, that button presses were
simply used to elicit outcomes, and that only feedback was
processed.

3.2. Electrophysiological data

While the experiment was designed with a parametric analysis
of the effect of RPE utility on voltage in mind, we first present a
standard factorial treatment, since this is conventional in the
literature. The scalp topography of valence effects, captured by a
difference wave of —RPEs and +RPEs, is shown in Fig. 3. In
keeping with the literature, this shows an early frontocentral
negativity, shifting parietally at greater latencies. Simple wave-
forms (with no high pass filter) for +RPEs and —RPEs are
provided, along with the associated difference wave at Fz. Because
there is no accepted convention for how the FRN is quantified in
the literature, here we quantified it in three different ways, a peak
to peak measure, a mean voltage measure and a peak of difference
wave measure. The peak to peak measure was comprised of the
difference between the most positive peak in the interval 100-
300 ms and the most negative peak in the interval 200-400 ms.
A two (valence: good vs. bad) x five (electrode: Fz, FCz, Cz, CPz, Pz)
ANOVA revealed a significant valence effect (Fy54=28.97, p=.004),
a significant electrode effect (F4216=47.52, p <.001) but no inter-
action (F4216=2.15, p=.14). The same ANOVA performed on mean
voltage in the interval 200-400 ms revealed an effect close to
significance for valence (F;54=3.64, p=.062), and electrode
(Fa216=2.88, p=.086) but no interaction (F < 1). Using a peak of
difference wave measure, one sample t-tests revealed that all
electrodes showed a significant negative peak in the interval 200-
400 ms. There was no interaction with electrode however, as
shown by a non-significant (F< 1) effect of electrode on this
difference wave peak. The factorial analyses above suggest a
mediofrontal response to valence, although this was not signifi-
cantly greater at frontocentral sites. As anticipated however, the
participants' passive stance, and the absence of categorical win-
ning and losing stimuli resulted in weak effects, and so we now
turn to the more powerful correlational analyses.

Fig. 4a shows the grand average correlation coefficients of
voltage and utility at three representative midline sites. In this
figure, deviations from baseline indicate points in time at which
voltage amplitude appears to code RPE utility. The approximate
threshold for significance (p <.05) is shown; however this suffers
from the multiple comparisons problem leading to an inflated
possibility of Type I error. To correct for this, the Maris and
Oostenveld cluster randomisation procedure described above
was used, applied in the interval 100-700 ms and at Fz, FCz, Cz,
CPz and Pz, and the surviving clusters of RPE-related activity in the
waveform are shown in Fig. 4b. These clusters are considered
individually below. To aid visualisation of how Fig. 4 would
correspond to a standard time x voltage plot readers may refer
to Supplementary Fig. 1.

Analysis of the +RPEs revealed three clusters of activity that
were significant at the .008 threshold set by Bonferroni correction:
cluster 1" occurring at all midline sites from ~140 to 180 ms
(p=.000007), cluster 2%, for which the largest temporal response
was at Fz from 204 to 312 ms (p=.0003) and cluster 3" for which
the largest temporal response was at Pz from 418 to 600 ms
(p=.000002).
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Fig. 3. Effects of valence, that is, the average of all +RPEs contrasted with all —RPEs. (a) Scalp topography of difference, (b) grand averages at Fz, and (c) difference wave at Fz.

Analysis of the —RPEs revealed four clusters of activity that
were significant at the .004 threshold set by Bonferroni correction:
cluster 1~ occurring at all midline sites from ~145 to 180 ms
(p=.0001), cluster 2, for which the largest temporal response
was at Fz from 198 to 272 ms (p=.00002), cluster 3, occurring at
all midline sites from ~310 to 390 ms (p <.000002) and cluster
4~ for which the largest temporal response was at Pz from 442 to
648 ms (p=.000006).

3.3. Discrimination of salience and utility effects

An important objective of the experiment was to distinguish
intervals in the post-feedback waveform which appeared to code
for the utility of +RPEs and —RPEs from those merely coding for
the size of UPEs. Since UPE size and RPE utility are perfectly
positively correlated for +RPEs (the bigger the prediction error
the higher the utility) and perfectly negatively correlated for
—RPEs (the bigger the prediction error, the lower the utility),
intervals in which a UPE size response occurs should show a
response to RPE utility that is oppositely signed for +RPEs and
—RPEs. Fig. 4b allows identification of these. From ~145 to
180 ms, across the midline broadly, a UPE size response appears
to occur, as indicated by correlations between voltage and utility
which are oppositely signed for +RPEs and —RPEs. The negative
sign of the correlation for +RPEs indicates that in the original
waveforms increased utility for good outcomes was associated
with increased negativity of voltage. In contrast, the positive sign
of the correlation for —RPEs indicates that in the case of bad
outcomes decreased utility (i.e. large —RPEs) was associated with
negativity of voltage. Thus large prediction errors, regardless of
their sign, induced a voltage-negativity in this interval. A second
UPE size response was seen from ~ 200 to 270 ms, strongest at Fz.

The reversal of the correlation signs relative to the preceding UPE
size response indicates that here large prediction errors, regardless
of their sign, were associated with positivity of voltage. Note that
responsiveness to +RPEs alone persisted beyond this interval up
to 312 ms, an effect we consider below. From ~310 to 390 ms
across all midline sites there was a significant correlation between
voltage and the utility of —RPEs only. The positive sign of the
correlation indicates that positivity of voltage was associated with
increased utility (i.e. small —RPEs showed more positive voltages
than large —RPEs). Finally, from ~400 to 640 ms, and most
pronounced at Pz, another UPE size response was seen, with
positivity of voltage associated with large prediction errors.
Fig. 4c shows the incidence of UPE size responses alone, with
utility effects removed.

A considerable advantage of the cluster randomisation techni-
que is that it does not require any assumptions about the timing of
components, instead locating all intervals of significant activity
while nevertheless avoiding increased Type 1 error. Notwithstand-
ing this absence of a priori stipulations about where effects should
be measured, it is still appropriate to interpret its results in the
light of theoretical expectations. One such expectation is that a
response to RPE utility will occur in the interval 200-350 ms. In
keeping with this expectation, Fig. 4b suggests an encoding of
+RPEs from 272 to 310 ms at Fz. However, the cluster randomisa-
tion technique has combined this effect with the earlier UPE size
coding. This means that a statistical demonstration of coding of
+RPE utility is wanting, since while the transition from UPE size to
+RPE utility coding at 272 ms is visually compelling, the signifi-
cance of the +RPE coding depends to an unknown degree on
conglomeration with the earlier UPE size effect. To establish the
reality of the +RPE encoding in the 272-310 ms interval, the
cluster randomisation procedure was run only in the interval 272-
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Fig. 4. (a) Grand average of Pearson correlation coefficients of voltage and RPE utility. Dotted lines show approximate threshold for significance of a one sample t-test of
correlation coefficients (N=55, expected value of r under the null hypothesis is 0). (b) Intervals of significant correlation between voltage and RPE utility after correction for
multiple comparisons. t-values were obtained from a one sample t-test of correlation coefficients (N=55, expected value of r under the null hypothesis is 0) at each time
point and formed into clusters of significance for which a cluster-level t value was calculated as the sum of individual t-values. This was compared to a Monte Carlo simulated
distribution generated under the null hypothesis (r=0) to establish significance. Non-significant (p > .05) values of t have been set to zero. See text for further details.
(c) Intervals coding for unsigned prediction error size, or salience. (d) Intervals coding for RPE utility.

700 ms. The cluster remained significant at the.0125 threshold set
by Bonferroni correction: p=.002). Fig. 4d shows the incidence of
utility responses alone, with UPE size effects removed.

The use of Pearson correlation coefficients to examine RPE
encoding presumes that the relationship between voltage and
utility is linear, and this assumption was made to simplify the
analysis and its exposition. Having identified intervals of encoding
of +RPEs from 272 to 310 ms and —RPEs from 310 to 390 ms
under this linear assumption, we examined the nature of the
relationship by plotting grand average voltages at each of the 60
levels of utility. Fig. 5a reveals a linear relationship between
voltage and utility for both +RPEs and —RPEs. Fig. 5b provides
the corresponding plot for the interval 200-270 ms. For compara-
tive purposes, the x axis has been left as RPE utility; however the

V-shaped function clearly suggests that it is of UPE size that is
being coded, and with respect to this variable, the function is once
again linear.

4. Discussion

Effective reinforcement learning should be sensitive to both
punishment and reward and so should make use of the quantitative
information held in the utility of both +RPE and —RPEs. The
present experiment investigated whether such sensitivity to both
+RPEs and —RPEs was shown in mediofrontal ERPs. To do this, we
initially identified intervals of the waveform responsive simply to
UPE size, since this might have complicated previous interpretations
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of RPE utility effects. While early and late intervals suggested coding
for UPE size, the study suggested that in the interval ~270-390 ms
RPE utility, not UPE size was coded. In this interval, the mediofrontal
waveform was responsive to the utility of both +RPEs and — RPEs.
Importantly, increased utility in both kinds of RPE was associated
with increased positivity of voltage. This is important because
integrated coding of +RPEs and —RPEs as depicted in Fig. 1a
requires the relationship between utility and voltage to be same-
signed for both RPE valences in order to establish a common
currency of utility for reward and punishment.

It is worth noting here that the value of the correlation sign is
not meaningful in itself and the implications would be unaltered if,
in the interval 270-390 ms it was negative for both +RPEs and
—RPEs. To draw an analogy with more familiar examples, while
the sign of traditional components such as the N2 and P3 is clearly
pre-eminent for those components' identification, it does not itself
convey any information regarding the component's function.
Furthermore, the fact that for both +RPEs and —RPEs the sign
of the relationship between utility and voltage alternates across
the waveform, as shown in Fig. 4, is not remarkable and can be
assumed to indicate sequential and independent components
responding to the same properties of feedback but with opposite
polarity. A well-known existing example of this is the N2-P3
complex in which unexpected events produce an ERP showing an
accentuated negative peak followed by an accentuated positive
peak (Folstein & Van Petten, 2008). Indeed, an analogous effect can
be seen in Supplementary Fig. 1, where large UPEs are associated
with an accentuated negative peak at ~175ms and then an
accentuated positive peak at ~210ms and this is reflected in
Fig. 4 by a correlation sign switching at ~200 ms.

Returning to the observed utility effects, the correlation of
utility and voltage for +RPEs at 272-310 ms is notable not for the
actual sign of the correlation but simply for the absence of an
oppositely signed correlation for —RPEs in the same interval; it is
this absence that allows us to discount the possibility that this is a
UPE size response, leaving an RPE utility response as the most
probable alternative. The same inference applies to the correlation
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Fig. 5. Grand average of voltages at each level of RPE utility at Fz for (a) +RPEs in
the interval 272-312ms and —RPEs in the interval 312-390 ms, and (b) all
prediction errors in the interval 200-270 ms.

of utility and voltage for —RPEs at 310-390 ms, and collectively
this forms the basis for our primary conclusion that both +RPE
utility and —RPE utility are coded in the mediofrontal feedback
locked waveform.

As noted above, the relevance of the correlation sign lies in the
fact that increased utility was associated with increased positivity
of voltage for both kinds of RPE. This suggests the possibility of a
single RPE processing system capable of assigning a utility value to
all outcomes, both good and bad, in a manner directly comparable
to that used by formal reinforcement models. Moreover, the
consecutive nature of the RPE utility signal, with —RPE coding
following +RPE coding, would appear to be consistent with one
account of midbrain RPE generation. It has been proposed that the
midbrain dopamine neurons that code +RPEs with phasic
increases are limited in their ability to code —RPEs with phasic
decreases because of their already low tonic firing rate, and may
therefore code the utility of —RPEs with the duration of firing
decrease (Bayer, Lau, & Glimcher, 2007; Mileykovskiy & Morales,
2011). This would result in a delay in the transmission of —RPEs to
the neural generator of the FRN consistent with the effect shown
here. Note however that the scalp topography of the response to
+RPE and —RPE utility differed, with +RPEs most pronounced
frontally, but —RPEs showing a broader distribution. While it is
possible that there is a single frontal source for all RPE-related
activity and then an additional source for —RPEs specifically, it is
also possible that there is a distinct generator for each kind of RPE.
While functionally there is no need for —RPEs and +RPEs to be
processed in the same neural structure in order to effect reinforce-
ment learning this does of course undermine the case for a single
unitary RPE encoder.

The current study found the strength of coding of —RPE utility
to be stronger than coding of +RPE utility. However, a recent
review of the FRN by Walsh and Anderson (2012) found coding of
+RPE utility to be more commonly observed than —RPE utility
coding. One source of this asymmetry may well be the interval of
measurement of the FRN, which shows wide variability across the
literature, but often does not extend beyond 350 ms or even
300 ms, and thus could miss later —RPE effects. A second source
concerns interference from the P3. While this study used a 2 Hz
filter in an attempt to mitigate P3 effects, many FRN studies do not.
Since the P3 is typically more positive for unexpected and high
magnitude outcomes regardless of valence (San Martin, 2012), a
late +RPE signal would be augmented by this UPE effect while a
late —RPE signal would be diminished. This constitutes a specific
example of the distorting effects that components encoding UPE
size can have on interpreting utility effects in components that
they overlie.

Two other experiments have investigated the ERP response to
parametrically manipulated +RPEs and —RPEs. Talmi,
Fuentemilla, Litvak, Duzel, and Dolan (2012) explicitly looked for
an integrated RPE utility coding across +RPEs and —RPEs and
reported failure in this regard, instead finding a UPE size response.
This is likely a consequence of the interval chosen however, 200-
300 ms, where this study also found a strong UPE size signal.
Using concurrent MEG across a wider time range however, the
authors found an integrated utility signal at 320 ms, close to the
310 ms point in the present experiment where + RPE utility coding
switches to —RPE utility coding.

Pedroni, Langer, Koenig, Allemand, and Jancke (2011) also
investigated +RPEs and —RPEs and found consecutive responses
at similar latencies to this study: +RPE utility coding at 290-
310 ms and —RPE utility coding at 360-380 ms. An important
difference however was that the study found the correlation
between voltage and —RPE utility to be negative, not positive. A
key difference between the study and that of ours and Talmi et al.'s
is that in Pedroni et al.'s, —RPEs were achieved by omission of
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reward. Esber and Haselgrove's (2011) claim of an inherent
lowered saliency of non-rewards has already been noted. Further-
more, single cell work has suggested the possibility of separate
systems for coding reward delivery and reward omission, regard-
less of the utility that either eventuality comprises. In particular,
Joshua, Adler, Mitelman, Vaadia, and Bergman (2008) have found
midbrain dopamine neurons that increased their response to
aversive outcomes but decreased it to omitted rewards, despite
both these outcomes constituting —RPEs. Thus the manner in
which —RPEs were generated may explain the reversal of the sign
observed in Pedroni et al.'s study with respect to that of ours and
Talmi et al.'s.

The utility effects at 275-390 ms occurred between what
appeared to be strong responses to UPE size occurring in the
intervals ~145-180 ms, ~200-270 ms and ~400-640 ms. These
intervals were indicated by significant oppositely signed correla-
tions of RPE utility with voltage, represented by the inverted
waveforms of +RPEs and —RPEs in Fig. 4. The UPE size effect at
200-270 ms is consistent with other demonstrations of strong UPE
size effects in this interval (Hauser et al., 2014; Talmi et al., 2013)
and fMRI work showing such a signal (Metereau & Dreher, 2013;
Rutledge, Dean, Caplin, & Glimcher, 2010). The sustained strong
UPE size effect at Pz running from 400 to 640 ms corresponds
spatiotemporally to the slow wave component, shown by Foti,
Weinberg, Dien, and Hajcak (2011) to be responsive to UPE size
rather than RPE utility.

The demonstrated UPE size effects, especially in the 200-
270 ms interval, appear to vindicate the concern that FRN mea-
surements are susceptible to UPE size contamination. The direc-
tion of the UPE size effect, greater positivity for larger prediction
errors, can be expected to increase voltage differences for +RPEs
of different size and decrease them for —RPEs of different size,
leading to an apparent preferential sensitivity of the FRN to
+RPEs. However, this UPE size effect is also of interest in its
own right, as the same effects have been seen in single cell
recordings (Matsumoto, Matsumoto, Abe, & Tanaka, 2007) and in
fMRI meta-analyses (Bartra, McGuire, & Kable, 2013), described as
indicating motivational salience (Bromberg-Martin et al., 2010). As
large UPEs were as common as small ones in this study, the
“saliency” indexed by this UPE size response does not reflect
novelty of the stimulus itself, but rather the notability of the
appearance of a value that is an outlier with respect to a current
estimate of a distribution. Such comparisons, and the updated
expectations they produce, are central to Bayesian models of
optimal foraging. They might, furthermore, benefit from indepen-
dence of RPE circuitry: an animal that had eaten to satiation, for
example, would still do well to note an unusually large source
of food.

As we note earlier, an apparently unambiguous response
function can still be an artefact synthesised from two components
with quite different response functions where overlap is complete.
It is possible that an apparent UPE size response is in fact the
aggregate effect of separate populations of neurons coding +RPE
and —RPE utility. In this scheme, one population codes +RPE
utility as in Fig. 1a, and another codes — RPE utility as in Fig. 1b, but
with a reflected response function, that is with increases of
activation for large —RPEs rather than decreases. Such response
functions have been found in single cells (Asaad & Eskandar, 2011;
Matsumoto et al., 2007) often in close proximity in the primate
ventromedial prefrontal cortex and anterior cingulate cortex
(Kennerley, Dahmubed, Lara, & Wallis, 2009; Monosov &
Hikosaka, 2012; Quilodran, Rothe, & Procyk, 2008). This makes
their separation by EEG and fMRI impractical, leaving the question
unresolved at present of whether an apparent UPE size signal
might in reality reflect an aggregate of two utility signals occurring
earlier than the FRN, and which might in fact be involved in its

generation. This interpretation is less parsimonious on face value,
partly because it invokes two underlying mechanisms rather than
one, but also because neural discrimination between large —RPEs
and large +RPEs then requires a following neural integrator
receiving excitation from one source and inhibition from the other
in order to generate the required integrated utility function in
Fig. 1c. None of these possibilities are neurally implausible how-
ever, and the application of techniques other than EEG will be
required to resolve these two interpretations of the UPE size signal
that are both equally consistent with the data.

Finally, it is worth discussing the consequences of using a
correlational waveform as the basis for analysis rather than a
standard voltage-based waveform. It should be noted first that the
correlation coefficients are small simply because they are based
upon single trial ERP voltages, which are inherently noisy. In
interpreting these correlations, the p value is more relevant than
the r value because the latter is greatly affected by the amount of
averaging prior to running the correlation. For example, take a
representative correlation, r=.04, found on the +RPE correlational
waveform of Subject #6 at 306 ms. This value of r is based on
~825 individual data points of voltage plotted against 30 levels of
RPE, which reveals a great deal of scatter between the points. By
averaging voltage at each RPE level we are left with 30 data points,
a much reduced scatter, and now a calculated r=.21. Reducing this
to three bins of low, mid and high RPE gives a reported r=.52. This
final level of averaging better approximates to the sort of compar-
ison and effect size that is seen in standard factorial designs.

The question of peaks should also be addressed. FRN studies
often, but by no means always, produce a waveform with an N2
peak superimposed on an ongoing positivity running from
~100 ms to ~400 ms. Opinion varies as to the value of using this
peak to identify the FRN: while some studies use its amplitude, or
its amplitude relative to an adjacent positive peak as a measure of
the FRN, others ignore the N2 peak, instead using a simple mean
amplitude measure across a set interval, or a measure based on a
difference wave of good and bad outcome waveforms (either peak
or mean amplitude). It is our opinion that the N2 peak of a single
(i.e. undifferenced) waveform is not a reliable guide to either the
amplitude or latency of the FRN component. The theoretical basis
for this position has been clearly stated by Luck (2005), which is
that peaks are not equivalent to components because each peak in
a single waveform represents the summed effect of many compo-
nents. A further important methodological objection to use of the
N2 peak is that it may be absent, particularly for large +RPEs, and
setting peak values to zero in such cases (Holroyd, Nieuwenhuis,
Yeung, & Cohen, 2003) produces a floor effect that distorts the
comparison of +RPEs and —RPEs. As argued by Luck (2005),
components are generally better described by an experimental
effect. This has traditionally been achieved by differencing pairs of
waves drawn from different levels of an independent variable.
While correlational waveforms are simpler and more powerful in
cases where the independent variable is continuous, they achieve
exactly the same end and should produce qualitatively similar
results. In comparison, single waveforms, taken in isolation, can
produce quite different and possibly misleading phenomena. As a
case in point, single waveforms for the present experiment (see
Supplementary Fig. 1) show a negative deflection at ~175 ms.
However, this is incidental to determining the latency of the FRN,
since there is no effect of valence at this point and sensitivity to
valence is by definition a property of the FRN component. In
contrast, a UPE size effect does occur close to this negative peak,
though of course that need not be so, a peak might occur with
equal amplitude for large and small UPEs.

To conclude, this experiment investigated whether a medio-
frontal ERP response existed to both +RPE and —RPE utility. The
experiment controlled confounds that have not previously been
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controlled. Rather than using a standard factorial design, RPE size
was manipulated parametrically, using a powerful correlational
analysis. A cluster randomisation based correction for multiple
comparisons allowed us to investigate the responsiveness of the
waveform beyond the window typically used to assess the FRN
without risk of false positives. Our results suggest that medio-
frontal ERPs are responsive to the utility of both —RPEs and
+RPEs and to UPE size (salience).

Appendix A. Supporting information

Supplementary data associated with this article can be found in
the online version at http://dx.doi.org/10.1016/j.neuropsychologia.
2014.06.004.
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