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Ocean acidification is expected to alter a wide range of marine systems, but there is great uncertainty about the
outcome because indirect effects are often crucial in ecology. Work at volcanic seeps has shown that major
ecological shifts occur due to chronic exposure to acidified seawater. Changes in herbivore densities are often
seen and this may interact with direct CO2 effects to determine benthic community structure. Here, an exclusion
experiment was used to test effects of herbivory in benthic communities along a pCO2 gradient off Methana
(Greece). A manipulative experiment was used to examine how large herbivores affected sublittoral algal
communities as seawater carbon dioxide levels increased. Sea urchins and herbivorous fish dramatically reduced
macroalgal biomass at background carbon dioxide levels; this effectwas not hamperedby increasedpCO2 despite
lower sea urchin densities near the seeps, since herbivorous fish abundances increased concurrently. We found
that carbon dioxide levels up to about 2000 μatm are unlikely to reduce the role of herbivory in structuring ben-
thic communities if tolerant species are able to replace those that are vulnerable. A shift fromsea urchins tofish as
main grazers highlights that ocean acidification may cause unexpected responses at the community level, and
that maintaining high functional redundancy in marine ecosystems is key to improving their resilience.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

Increasing anthropogenic atmospheric CO2 is altering the chemistry
of surface seawaterworldwide, resulting in ocean acidification (Caldeira
and Wickett, 2003). Mean surface ocean pH has already decreased by
0.1 units (a 30% increase in H+ concentration) compared to pre-
industrial times, and is falling rapidly (Doney et al., 2009). Studies at
volcanic seeps have shown that chronic exposure to increased CO2

reduces diversity and causes changes in benthicmacroalgal and inverte-
brate communities (Fabricius et al., 2014; Kroeker et al., 2011; Porzio
et al., 2011). These changes could be caused by direct physiological
effects of CO2 or indirect effects, such as altered competitive interactions
between species (Arnold et al., 2012; Kroeker et al., 2013). Grazers often
determine the structure of shallow water communities (Poore et al.,
2012); some are expected to become more abundant as CO2 increases
(e.g., amphipods, Cigliano et al., 2010; Kroeker et al., 2011), whereas
others are expected to decrease in abundance (e.g., sea urchins,
Hall-Spencer et al., 2008; Johnson et al., 2012). The contribution of
grazers to community changes along pCO2 gradients has not been
previously tested experimentally.
ini).
If sea urchin densities do decrease due to ocean acidification this
may leave marine ecosystems vulnerable to phase shifts; for example,
tropical coral reefsmay be overgrown bymacroalgae if grazing pressure
is removed and the algae are competitively advantaged over corals
(Diaz-Pulido et al., 2011; Hughes et al., 2007).

In Mediterranean sublittoral environments, high densities of the
sea urchins Paracentrotus lividus (Lamarck, 1816) and Arbacia lixula
(Linnaeus, 1758) can reduce fleshy algae biomass creating assemblages
dominated by encrusting algae (Guidetti and Dulcic, 2007). Sea urchin
grazing often reduces seaweed standing crop in temperate rocky reefs
worldwide; encrusting algal communities are considered an alternative
stable state to kelp beds (Filbee-Dexter and Scheibling, 2014) since,
once established, they can be maintained by relatively low sea urchin
densities (Chiantore et al., 2008). Herbivorous fish typically exert weak-
er grazing pressure on temperate macroalgal communities than sea
urchins (Floeter et al., 2005), but in the Mediterranean they can limit
the distribution of many macroalgae (Vergés et al., 2009) and maintain
habitats with very lowmacroalgal biomass (Sala et al., 2011). The main
herbivorous fish are the sparid Sarpa salpa (Linnaeus, 1758) and the
scarid Sparisoma cretense (Linnaeus, 1758), as well as the lessepsian
migrant Siganus luridus (Rüppell, 1829) and Siganus rivulatus (Forsskål
and Niebuhr, 1775); the latter two species can account for over 90% of
herbivorousfish biomass inGreek southern seas (Kalogirou et al., 2012).
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Herewe examine the interplay between herbivorousfish and sea ur-
chins. Ocean acidification is detrimental tomany sea urchin species and
their densities often decrease as seawater pCO2 increases (Bray et al.,
2014; Calosi et al., 2013). Although increasing CO2 can affect fish behav-
iour, making them less alert to predators (McCormick et al., 2013;
Munday et al., 2014), many fish seem to tolerate carbon dioxide levels
predicted for the end of this century (Melzner et al., 2009). Herbivorous
fish could benefit from ocean acidification because of increased food
availability following increasing primary productivity and decreased
competition with more susceptible herbivores, such as sea urchins
(Johnson et al., 2012; Pinnegar and Polunin, 2004).

Our understanding of ecosystem shifts due to elevated CO2 has
evolved through a series of studies at volcanic seeps. Initial work led
researchers to conclude that a shift from coralline to fleshy algal
dominated communities was driven by dissolution effects on calcified
algae (Hall-Spencer et al., 2008; Martin et al., 2008). Subsequent work
showed that certain coralline algae were able to withstand dissolution
at CO2 levels predicted for the end of this century, but that fleshy
algae outcompeted them at elevated CO2 levels (Kroeker et al., 2013).
In a comparison of tropical and temperate CO2 seep systems, Johnson
et al. (2012) found that Padina spp. thrived at high CO2 levels despite
dissolution of their carbonate layer and postulated that this was possi-
ble because their main grazers (sea urchins) were unable to tolerate
high CO2 conditions. There is now a growing realisation that major
ecological effects of ocean acidification are likely to be indirect and
mediated through changes in trophic interactions, and that functional
redundancy may have a role in ecosystem resilience to increased CO2

(Alsterberg et al., 2013; Gaylord et al., in press). Here we test the
indirect and direct effects of ocean acidification on rockyMediterranean
shores with and without grazers present.

2. Methods

2.1. Study site and environmental parameters monitoring

Volcanic seeps off Methana influence carbonate chemistry along a
wide stretch of rocky shore, and can be used to study the effects of
elevated CO2 on biological communities as there are no confounding
gradients in temperature, salinity, total alkalinity, nutrients, hydrogen
sulphide and total and bioavailable heavy metals (Baggini et al., 2014).
In addition, the study sites had similar substratum type (sparse large
boulders) and degree of urbanisation, with only small villages and
hotels in the area (Baggini et al., 2014). Macroalgal communities change
consistently between pCO2 levels but not with any of the other factors
analysed, so carbon dioxide is themain determinant of benthic commu-
nity structure (Baggini et al., 2014). For the present study, a site with
high and variable pCO2 (SEEP) and a reference site (REF) were used
Fig. 1. Study sites (points) and area where pH was m
(Fig. 1). Environmental variables were measured in September 2012
and June 2013. Seawater pH, temperature and salinity were measured
using a multiprobe (YSI 63) from the shore. The probe was calibrated
before use with pH 4.01, 7.01 and 10.01 NBS standards. Since variations
of up to 1 pH unit were detected over a few hours at the low pH site, the
lack of precision in using the NBS scale for seawater measurements
(approximately 0.05 pH, Riebesell et al., 2010) was considered accept-
able for this study. For pH, medians and interquartile ranges (IQ) were
calculated from hydrogen ion concentrations before re-converting
back to pH values following seep monitoring methods provided by
Kerrison et al. (2011). Seawater samples for total alkalinity determina-
tion were collected in 125 ml borosilicate glass bottles with Teflon
caps. Three independent samples per site were collected twice per
visit, immediately poisoned with HgCl2 and stored in the dark until
analysis. Samples were analysed by Gran titration (AS-ALK 2, Apollo
SciTech) and the reliability of the measurements was checked against
standard seawater samples provided by A. Dickson (batches 112 and
121). The average total alkalinity value per site and individual pHmea-
surementswere used to calculate pCO2, HCO3

−, CO3
2−,ΩAr andΩCa using

CO2Sys software (Lewis and Wallace, 1998).

2.2. Herbivore surveys

Herbivore densities were determined at both sites. Densities of
P. lividus and A. lixulawere determined separately using transects: indi-
viduals present between 1 and 2 m depth were counted by snorkelers
along five transects (5 m long and 1 m wide) per site per species in
September 2012 and June 2013. Fish community composition and bio-
masswere quantified in September 2013 using a standard visual census
technique (while SCUBA diving) within belt transects of 25 m length
and 5 m width placed at 3 m depth (three replicates, 125 m2 surface
each). The observer conducting the fish survey moved at constant
speed identifying, counting and attributing all individuals to 5 cm size
classes within 2.5 m on either side of the 25 m transect line (La Mesa
and Vacchi, 1999; Giakoumi et al., 2012). Length estimates of fish from
the visual surveyswere converted towetweight by using the allometric
length–weight conversion: W = aLb, where W is weight in g and L is
total length in cm. The constant parameters a and b corresponding to
the closest geographical area were obtained from Morey et al. (2003).

2.3. Herbivore exclusions

Four sterile 10 × 10 cm ceramic tiles were attached to rocks using
epoxy putty and deployed at the twoMethana study sites by snorkelers
as controls; four tiles per site were enclosed in a 1 cmmesh cage to ex-
clude herbivores, and four additional tiles per site were enclosed in a
three-sided cage acting as procedural controls (Fig. S1). The cages
ore variable than at reference site (light grey).
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were painted using non-toxic antifouling paint (EP-2000, ePaint, Florida)
to prevent epiphytes from growing and shading the tiles. Tiles were de-
ployed in September 2012 and recovered in June 2013, whenMediterra-
nean seaweed biomass reaches its annual peak. All tiles were recovered,
except for one procedural control at both sites and one exclusion tile at
the high CO2 site.

After recovery, tiles were detached from the rock, put in individual
zip-lock bags and stored frozen. In the laboratory, their cover was
visually assessed and quantified as percent cover of functional groups.
The functional groups used were: fucoid algae (mostly Cystoseira sp.;
C. Agardh, 1820), erect brown algae, fleshy brown algae (mostly
Dictyota sp.; J.V. Lamouroux, 1809), calcifying brown algae (mostly
Padina pavonica; (Linnaeus) Thivy, 1960), turf algae (mat-forming
algae shorter than 2 cm, mostly juvenile Halopteris scoparia; (Linnaeus)
Sauvageau, 1904), encrusting black sponge, encrusting green algae,
filamentous green algae, articulated coralline algae, coralline crustose
algae (CCA), serpulidworms, biofilm, and bare substratum. The biomass
of turf and erect algae was measured by scraping the algae from the
tiles, drying them at 60 °C for 72 h and weighing them to obtain dry
weight (DW).

2.4. Statistical analyses

Sea urchin data were analysed with a three-way ANOVA (fixed fac-
tors: species, samplingmonth and site) after transforming them (fourth
root) to comply with the normality and variance homogeneity require-
ments of ANOVA. Log-transformed biomass of the three recorded her-
bivorous fish was also analysed using an ANOVA with site and species
as fixed factors. All the analyses above were performed using SPSS v19
(IBM, USA).

Structure of communities grown on tiles quantified using visual
census was tested using a two-factor PERMANOVA with “site” and
“treatment” as fixed factors. A square-root transformation was used to
reduce the influence of abundant taxa in the community and a Bray–
Curtis dissimilarity matrix was used. Type III sum of squares with
9999 unrestricted permutations of the raw data was used to account
for small sample sizes. Pairwise tests were performed when a factor
with more than two levels was significant. A nMDS plot was used to vi-
sually inspect the similarities among samples. The same procedure was
used to analyse biomass of communities grown on tiles.

Percent cover or biomass changes in key groups of macroalgae were
analysed using a two-factor permutational ANOVA with “site” and
“treatment” asfixed factors. Percent cover was used for those functional
groups that could not be reliably scraped from the tile (i.e., CCA,
encrusting green algae, encrusting black sponge, biofilm and bare
substratum). All analyses above were performed using PRIMER 6 with
PERMANOVA+ extension (Plymouth Routines in Multivariate Ecologi-
cal Research, version 6).

3. Results

3.1. Environmental parameters

Measured and calculated carbonate chemistry parameters are
shown in Table 1. The mean pH near the seeps was approximately 7.7,
more than 0.3 points lower than the reference site. Temperature and
salinity were not significantly different between the two sites. At the
high CO2 site, seawater pCO2 was double that of the reference site,
Table 1
Mean (±SD, n = 11–24) environmental parameters: pH, temperature and salinity were meas
ions, seawater saturation with respect to calcite and aragonite were calculated using CO2Sys.

pHNBS T (°C) S (PSU) pCO2 (μatm)

SEEP 7.70 ± 0.16 25.34 ± 0.85 38.77 ± 0.93 1676.8 ± 643.5
REF 8.09 ± 0.06 25.01 ± 1.05 38.94 ± 0.87 586.9 ± 106.7
even though on average seawater was still saturated with respect to
both calcite and aragonite.

3.2. Herbivore surveys

Sea urchin densities significantly differed both between sites and
between species (Table S1). No effect of sampling month was detected,
and the lack of significant interactions indicates that both A. lixula and P.
lividus densities changed consistently between sites. As no significant
effect of sampling month was detected, sea urchin densities were
pooled between sampling months for easier representation. Densities
of A. lixula were consistently higher than those of P. lividus (Fig. 2A),
with average densities of the former species ranging from 1.9 to 7.5 in-
dividuals in a five-metre transect. P. lividus densities ranged from 0.2 to
1.6 individuals. There was also a clear reduction in the densities of both
species near the seeps, with P. lividus being almost absent at the high
CO2 site.

Three herbivorous fish species were recorded at the study sites:
S. salpa, S. luridus and S. cretense. Similarly to sea urchins, both site and
species had a significant effect on fish biomass (Table S2). No significant
interactions were found, meaning that changes in each of the species
biomass followed a similar pattern between sites. All species increased
in biomass near the seeps (Fig. 2B), but the magnitude of the change
was very different among species: while S. cretense had a low biomass
that changed very little between sites, the two other species had very
marked changes in biomass between sites. S. luridus was present at
both sites and its mean biomass increased from 65 to 1565 g from REF
to SEEP. S. salpawas absent fromREF, while at SEEP it was the dominant
species in terms of biomass.

3.3. Herbivore exclusion

Structure and composition of assemblages growing on the experi-
mental units changed significantly between sites and treatments, but
there was no interaction between the two factors (Table 2). Since the
factor ‘treatment’ was significant, pairwise comparisons were per-
formed among treatment levels to detect which pairs were significantly
different. Exclusions were significantly different from both control
(t2,11 = 2.7397, p = 0.0001) and procedural control (t2,9 = 2.3722,
p = 0.0009), which did not differ between each other (t2,10 = 1.2182,
p N 0.05).

Fig. 3 shows that SEEP and REF were clearly different for all treat-
ments. Controls and procedural controls were closely grouped whereas
exclusion tiles were very different. At the SEEP site, where a different
group of algae (erect brown algae, fleshy brown algae, calcifying
brown algae)was dominant in each exclusion tile, whereas in the refer-
ence site there was mostly an increase in calcifying brown algal cover
when herbivores were excluded.

Statistical analysis of the fleshy and erect algal biomass produced
results analogous to the percent cover data, so only the latter are report-
ed as they are more comprehensive (i.e., they also include encrusting
forms). Total biomass significantly increased in the exclusion treatment
(Table S3), ranging from about 0.1 g in the control to approximately 3 g
in the exclosures (Fig. 4). However, at the reference site procedural
controls had values intermediate between controls and exclusions.

The eightmost abundant functional groups accounted formore than
95% of total abundance or percent cover and were analysed for
significant effects of site and treatment (statistical analyses reported
ured at Methana in September 2012 and June 2013 and pCO2, bicarbonate ions, carbonate

HCO3
− (mmol/kg SW) CO3

2− (mmol/kg SW) ΩCa ΩAr

2485.4 ± 112.4 125.0 ± 46.5 2.91 ± 1.06 1.93 ± 0.71
2140.5 ± 63.3 232.1 ± 25.9 5.40 ± 0.59 3.57 ± 0.39



Fig. 2.Herbivores abundance. (A) Average number (±SE, n=11) of sea urchins along 5m
transects at Methana study sites pooling data from September 2012 and June 2013.
(B) Average biomass (±SE, n = 3) of herbivorous fish per 25 m transect at REF and
SEEP in September 2013. Different letters represent significantly different groups.

Fig. 3.MDSplot of the results of an herbivore exclusion experiment performed atMethana
from September 2012 to June 2013; circles represent tiles placed at REF, triangles were
tiles placed at SEEP. Letters above the symbols represent the treatments: C is control, P
is procedural control, and E is exclusion.
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in Table S4), and percent cover or biomass of the four most abundant
functional groups are reported in Fig. 5. Overall, turf and erect algae in-
creased in herbivore exclusions, whereas encrusting forms showed the
opposite trend (Table S5). Biofilm percent cover did not show any clear
effect of herbivore exclusion, but it significantly increased at the high
CO2 site (Table S5). The effect of herbivore exclusion was always clear
at SEEP, while at REF some functional groups (turf algae and bare sub-
stratum) had biomass or cover values similar between exclusion and
procedural control (Fig. 5). There were significant differences between
sites as well, with turf algae, calcifying brown algae and CCA decreasing
as CO2 increased and fucoid algae, fleshy brown algae, biofilm and bare
substratum showing the opposite trend (Fig. 5; Table S5).
Table 2
PERMANOVA analyses of percentage cover of uncaged and caged tiles (square-root trans-
formed) deployed at Methana from September 2012 to June 2013. Main factors and their
interactions and degrees of freedom (df), sumof squares (SS),mean square (MS), pseudo-
F and permutational p for each of them are reported. Significant p values (b0.05) are in
bold.

Source df SS MS Pseudo-F p (perm)

Site 1 5380.7 5380.7 5.3584 0.0003
Treatment 2 11,675 5837.4 5.8133 0.0001
Site × Treatment 2 2318.5 1159.2 1.1544 0.3204
Residual 15 15,062 1004.2
Total 20 34,487
4. Discussion

Coastal assemblages often have low functional redundancy, so the
loss of a few species can negatively affect ecosystem functioning
(Micheli and Halpern, 2005). Although taxonomic diversity is known
to improve marine community resilience to increased temperatures
(Allison, 2004), there was so far no evidence that this applies to ocean
acidification. Here, we found that taxonomic diversity improvedmarine
community resilience to ocean acidification: herbivorous fish kept sea-
weed biomass low at elevated CO2 even though sea urchin densities
decreased.

We should bear inmind that sublittoral rocky shore communities off
present dayGreece are not ‘natural’ in that overfishing of apexpredators
has led to higher abundances of Mediterranean sea urchins and herbiv-
orous fish, as these are usually not targeted by commercial fisheries
(Guidetti and Dulčić, 2007; Sala et al., 2012). We found that grazer
diversity enabled present day community structure to remain the
same along a pCO2 gradient. At a global level, herbivorous fish abun-
dance has been strongly reduced by overfishing (Micheli and Halpern,
2005), and where this is combined with other herbivores disappearing
(e.g., sea urchin mass mortality in Jamaica) benthic habitats can
experience dramatic phase shifts (Hughes, 1994). Given that increased
CO2 levels appear to benefit fleshy seaweeds but negatively affect
scleractinian corals, maintaining herbivore diversity may help increase
coral reef resilience to ocean acidification.
Fig. 4. Average biomass (±SE; n = 3–4) of fleshy and erect algae grown on tiles for all
three treatments of the herbivore exclusion experiment conducted at Methana from
September 2012 to June 2013. Different letters represent significantly different groups.

Image of Fig. 2
Image of Fig. 3
Image of Fig. 4


Fig. 5.Mean (±SE, n= 3–4) percent cover (A) or biomass (B) of most abundant function-
al groups at the study sites (REF A and SEEP); all treatments are shown (C= controls; P=
procedural controls; E= herbivore exclusions). Different letters indicate significantly dif-
ferent sub-groups within a functional group.
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The relative role of bottom-up and top-down processes in shap-
ing marine ecosystems has long been a critical issue in marine ecol-
ogy research. The relative importance of these two types of
processes is highly context-dependant (Burkepile and Hay, 2006).
Our study adds to several others that show ‘bottom-up’ CO2 effects
can have significant effects on benthic communities (Fabricius
et al., 2014; Hall-Spencer et al., 2008). Here we found that herbivory
strongly controlled seaweed biomass and community structure re-
gardless of pCO2 levels, even though herbivore community composi-
tion changed dramatically.

Even though herbivores kept macroalgal biomass low at both pCO2

levels, the encrusting algal community changed since crustose coralline
algal cover significantly decreased at high CO2. There is nowwidespread
evidence that this group is sensitive to ocean acidification, and even tol-
erant species can be outcompeted by non-calcifying algae at elevated
CO2 levels (Brodie et al., 2014; Kroeker et al., 2013). Brown algae signif-
icantly increased near the seeps,which alignswith observations at other
CO2 seeps (Porzio et al., 2011). Johnson et al. (2012) reported increasing
densities of the calcifying brown alga Padina spp. as CO2 increased at
temperate and tropical seeps, possibly because of lower consumption
by sea urchins. In the present study, calcifying brown algae (mostly
P. pavonica) decreased in biomass with increasing CO2 when herbivores
were excluded due to increased competitionwith the fleshy brown alga
Dictyota sp.

Biomass of turf algae (i.e., brown mat-forming algae shorter than
2 cm) decreased near the Methana seeps, in line with surveys off Ischia
(Porzio et al., 2011). This is in contrast tomany laboratory experiments,
where turf algae can be advantaged by increased CO2 due to fast growth
rates and carbon limitation (Connell et al., 2013). However, some non-
calcifying turf algae such as those growing off Methana can be palatable
to grazers (Falkenberg et al., 2014), and therefore may be removed if
their grazers are resilient to ocean acidification. Conversely, biofilm
percent cover increased near the seeps, in accord with findings at CO2

seeps off Vulcano (Italy), where benthic diatoms and biofilm production
increase at elevated CO2 (Johnson et al., 2013; Lidbury et al., 2012).

Herbivore exclusion at Methana dramatically changed macroalgal
communities grown on tiles, with an increase in algal biomass regard-
less of site. At the reference site the calcifying brown algae P. pavonica
colonised all caged tiles, whereas at the high CO2 site caged tiles were
colonised by a variety of taxa (P. pavonica, Dictyota sp. and erect
brown algae). This confirms that non-calcifying algae increase in abun-
dance as pCO2 increases, likely because they can outcompete calcifying
species at elevated CO2 levels (Kroeker et al., 2013; Porzio et al., 2011).

Herbivory alters outcomes of macroalgal competition, favouring
less palatable macroalgal species or extremely fast-growing oppor-
tunistic algae (Hereu et al., 2008). At Methana, herbivore-resistant
encrusting algae became more abundant at both CO2 levels when
herbivores were present. Benthic communities at Methana had
smaller differences between CO2 levels when herbivores were
present (Fig. 4). This adds to a growing body of evidence that grazers
dampen the effects of climate change on primary producers, both in
terrestrial and marine ecosystems (Anthony et al., 2011; Falkenberg
et al., 2014; Post and Pedersen, 2008).

We found that both sea urchin species had reduced densities near
CO2 seeps regardless of sampling month, which is in accord with
their predicted sensitivity to ocean acidification resulting from labo-
ratory experiments (Dupont et al., 2010). Sea urchins were replaced
by herbivorous fish at the high CO2 site; functional redundancy of
herbivores can maintain top-down control on macroalgal biomass
and reduce the effects of multiple stressors on benthic communities
(Blake and Duffy, 2010; Eriksson et al., 2011). It should be noted,
however, that fish are highly mobile and could swim in and out of
the high CO2 area (Riebesell, 2008), masking potential negative ef-
fects of ocean acidification such as those on neuroreception (Shaw
et al., 2013).

Our herbivore exclusion experiment was only performed at one
reference and one high CO2 site; with more resources, performing
the experiment at more than one reference site would have been
preferable. However, at Methana we consider that pCO2 was the
main driver of change, since other environmental factors (tempera-
ture, salinity, heavy metals, hydrogen sulphide) did not vary signifi-
cantly between study sites (Baggini et al., 2014). Moreover, the
consistent presence of Cystoseira corniculata at both sites may well
reflect similar hydrodynamic regimes, as this species is known to
characterize Mediterranean rocky shores of high to moderate-high
wave energy (Huvé, 1972; Montesanto and Panayotidis, 2001).
Between-sites differences reported here are therefore likely to be
caused by changes in pCO2 levels, but repeating these experiments
in more than one reference site would improve their statistical
power. In particular, replicating herbivore fish surveys in more
sites and combining themwith laboratory experiments would be ex-
tremely useful, as they have more variable distribution patterns than
macroalgae or sea urchins, and they can usually swim in and out of
high pCO2 areas (Riebesell, 2008).

Recent research has shown that indirect effects can be as impor-
tant as the direct effects of CO2 in shaping community responses to
ocean acidification (Kroeker et al., 2013). Here we show that carbon
dioxide affects the composition of macroalgal communities in sublit-
toral habitats, but that grazers can maintain similar habitats despite
increases in CO2. The most striking finding of this study is that herbi-
vore functional redundancy can offset indirect effects of ocean
acidification; this is only possible in diverse ecosystems, highlighting
the necessity of managing local stressors to maintain high diversity
and increase ecosystem resilience to environmental change
(Ghedini et al., 2013).

Image of Fig. 5
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