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Radial frequency (RF) patterns, which are sinusoidal modulations of a radius in polar coordinates, are
commonly used to study shape perception. Previous studies have argued that the detection of RF patterns
is either achieved globally by a specialized global shape mechanism, or locally using as cue the maximum
tangent orientation difference between the RF pattern and the circle. Here we challenge both ideas and
suggest instead a model that accounts not only for the detection of RF patterns but also for line frequency
patterns (LF), i.e. contours sinusoidally modulated around a straight line. The model has two features. The
Þrst is that the detection of both RF and LF patterns is based on curvature differences along the contour.
The second is that this curvature metric is subject to what we term the Curve Frequency Sensitivity
Function, or CFSF, which is characterized by a ßat followed by declining response to curvature as a func-
tion of modulation frequency, analogous to the modulation transfer function of the eye. The evidence that
curvature forms the basis for detection is that at very low modulation frequencies (1Ð3 cycles for the RF
pattern) there is a dramatic difference in thresholds between the RF and LF patterns, a difference however
that disappears at medium and high modulation frequencies. The CFSF feature on the other hand explains
why thresholds, rather than continuously declining with modulation frequency, asymptote at medium
and high modulation frequencies. In summary, our analysis suggests that the detection of shape modu-
lations is processed by a common curvature-sensitive mechanism that is subject to a shape-frequency-
dependent transfer function. This mechanism is independent of whether the modulation is applied to
a circle or a straight line.

� 2017 Elsevier Ltd. All rights reserved.
1. Introduction

Radial frequency (RF) patterns are closed shapes, which are
deÞned by a sinusoidal modulation of a radius in polar coordinates.
Since their introduction ( Wilkinson, Wilson, & Habak, 1998 ), RF
patterns have become a popular class of stimuli in vision science,
commonly used to study various aspects of shape perception. The-
oretically, RF pattern detection (discrimination against a circle)
could be realized either by local Þlters matched to the parts of
the pattern, or by a global mechanism that integrates local parts
operating on the scale of the entire pattern. Wilkinson et al.
(1998) measured RF detection thresholds (circle vs. RF) as a func-
tion of frequency (RF1ÐRF24), and argued that the pattern of
thresholds could not be explained by local analyses of either orien-
tation or curvature. The maximum orientation difference between
an RF and a circle for a given amplitude is proportional to radial
frequency (see below), so if orientation was the cue, thresholds
would be expected to decline linearly (on a log-log plot) with mod-
ulation frequency. However, Wilkinson et al. showed that while
thresholds did decline at low RFs (up to RF3) they were constant
for higher RFs up to the frequency of 24 that was tested. A similar
argument led to a rejection of maximum curvature as the cue,
which also predicts a continuous decline in thresholds, this time
in proportion to the square of radial frequency. Instead,
Wilkinson et al. (1998) proposed that local information was pooled
into a global representation of shape. The idea was subsequently
developed by Poirier and Wilson (2006), Dickinson, Bell, and
Badcock (2013) and Kempgens, Lofßer, and Orbach (2013) , who
proposed global models for RF shapes that integrated local maxi-
mum curvature information. Support for a global shape model of
RF processing also came from a number of psychophysical studies
of RF detection ( Bell & Badcock, 2008; Bell, Badcock, Wilson, &
Wilkinson, 2007; Bell, Wilkinson, Wilson, Lofßer, & Badcock,
2009; Dickinson, McGinty, Webster, & Badcock, 2012; Dickinson
et al., 2013; Hess, Achtman, & Wang, 2001; Hess, Wang, & Dakin,
1999; Jeffrey, Wang, & Birch, 2002; Lofßer, Wilson, & Wilkinson,
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2003; Schmidtmann, Kennedy, Orbach, & Lofßer, 2012; Tan,
Dickinson, & Badcock, 2013 ), as well as psychophysical studies
investigating suprathreshold RF shape aftereffects ( Bell,
Gheorghiu, Hess, & Kingdom, 2011; Bell, Hancock, Kingdom, &
Peirce, 2010).

Some recent studies, however, have challenged these conclu-
sions. Mullen, Beaudot, and Ivanov (2011) measured detection
thresholds for RF patterns with modulation frequencies between
2 and 20, as well as sinusoidally modulated lines, referred to here
as line frequency or LF patterns, with modulation frequencies rang-
ing from 1 to 20. Over the range of common frequencies (2Ð20),
thresholds were similar for the two types of pattern. In keeping
with similar proposals in previous studies dealing exclusively with
LF patterns (Prins, Kingdom, & Hayes, 2007; Tyler, 1973 ), Mullen
et al. (2011) suggested that the critical features underlying detec-
tion for both RF and LF patterns were the differences between the
tangent orientations at consecutive inßection points along the
waveforms. These inßection-point tangent-orientation differences
are the maximum orientation differences for an LF pattern and,
when centred on the peaks, the maximum orientation differences
for an RF pattern. Based on these tangent orientation differences,
Mullen et al. proposed different model variants for LF and RF pat-
terns, and showed that with a suitable adjustment of each modelÕs
free parameters, the two models could be Þt to the data for fre-
quencies between 2 and 6 (a critical discussion of Mullen et al.Õs
model can be found in Dickinson et al., 2012 ). Note incidentally
that Wilkinson et al. (1998) also observed similar thresholds
between LF and RF, but rejected a common mechanism on the
grounds that RF and LF thresholds showed a different dependence
on contrast.

Another study that has questioned previous views on RF detec-
tion is that of Baldwin, Schmidtmann, Kingdom, and Hess (2016) .
The context for this study are the aforementioned threshold stud-
ies investigating RF summation, in which RF detection thresholds
were measured as a function of the number of modulated RF cycles
(Bell et al., 2007, 2009; Bell & Badcock, 2008; Dickinson et al.,
2012; Hess et al., 1999; Lofßer et al., 2003; Schmidtmann et al.,
2012; Tan et al., 2013 ). The amount of summation in these exper-
iments typically exceeded the prediction expected from a system
where each RF cycle was detected independently, i.e. by probabil-
ity summation, assuming a High Threshold Theory (HTT) model of
detection. This was taken as evidence for a global pooling mecha-
nism for RF patterns. However, Baldwin et al. (2016) showed that
the detection of RF patterns followed the predictions of Signal
Detection Theory (SDT) rather than HTT, in keeping with the belief
that SDT is categorically the better model of detection ( Green &
Swets, 1988; Kingdom, Baldwin, & Schmidtmann, 2015; Laming,
2013; Nachmias, 1981 ). Moreover, when modelled under SDT,
Baldwin et al. (2016) showed that probability summation could
not be rejected as a model of RF summation. This result therefore
also raises the possibility that alternative, non-global mechanisms
might underpin RF detection. The signiÞcance here is that if non-
global mechanisms underpin RF pattern detection, a common
mechanism for LF and RF pattern detection becomes a real possi-
bility, because LF patterns are themselves inherently more likely
to be detected by a non-global rather than global mechanism.

In this communication we are interested in whether the same
model can account for both RF and LF data across thefull range of
frequencies (1Ð20), without change of parameters. As it stands, a
model based on the orientation differences at consecutive inßec-
tions within the waveform does not account for the profound dif-
ferences in thresholds between RF and LF patterns at very low
frequencies that we and others Þnd, nor does it predict the asymp-
totic thresholds at middle and high frequencies. We suggest
instead a new model based on the detection of curvature differ-
ences to account for the pattern of thresholds observed in both
RF and LF patterns. We demonstrate that this model not only pre-
dicts the initial differences between RF and LF patterns for low fre-
quencies, but also the asymptotic thresholds in these patterns for
high modulation frequencies. We have tested our model against
existing data as well as new data obtained using both RF and LF
patterns at a wide range of frequencies.

2. Methods

2.1. Subjects

Four observers participated in this study. Three were na•ve as to
the purpose of the study. Subjects had normal or corrected-to-
normal visual acuity. Informed consent was obtained from each
observer. All experiments were approved by the McGill University
Ethics committee and were conducted in accordance with the orig-
inal Declaration of Helsinki.

2.2. Apparatus

The stimuli were generated using MATLAB (MATLAB R 2015b,
MathWorks) and presented on a gamma-corrected Iiyama Vision
Master Pro 513 CRT monitor running with a resolution of
1600 � 1200 pixels and a frame rate of 60 Hz (mean luminance
40 cd/m 2), under the control of an Apple Mac Pro (3.33 GHz).
Observers viewed the stimuli at a distance of 200 cm. At this view-
ing distance one pixel subtended 0.0072 � of visual angle. Experi-
ments were performed in a dimly illuminated room. Routines
from the Psychophysics Toolbox were employed to present the
stimuli ( Brainard, 1997 ).

2.3. Stimuli

The aim of this study was to compare the detection of RF and LF
patterns. Both stimulus types were white and presented on a mid
grey background. The RF patterns are deÞned by sinusoidal modu-
lations of a radius in polar coordinates ( Wilkinson et al., 1998 ).

r hð Þ ¼rmean½1 þ Asinðx h þ uÞ� ð1Þ

where r (radius) and h refer to the polar coordinates of the contour
and rmean is the radius of the modulated circle, which was set to
0.715 deg. The variable A deÞnes the modulation amplitude, x
the radial frequency and u the phase (orientation), where the latter
was randomly varied on a trial to trial basis. In order to compare
thresholds for RF and LF patterns we express the RF modulation
depth not as a proportion of the radius rmean, as with amplitude A
in Eq. (1), but in common units of degrees of visual angle. By
expanding Eq. (1), one can see that this is given by the product of
A and rmean. Twelve frequencies x were used: 1, 2, 3, 4, 6, 8, 10,
12, 14, 16 18 and 20. The cross-sectional luminance proÞle was
deÞned by a Gaussian with a standard deviation of 0.05 deg. The
phase u was pseudo-randomly varied on a trial-to-trial basis.

The LF patterns consisted of two horizontal lines, which were
modulated in a sinusoidal manner with the same frequencies as
the RF patterns:

lðhÞ ¼Asinðx h þ uÞ ð2Þ

where A is expressed in degrees of visual angle. The modulation fre-
quency was the same in both lines. For example, Fig. 1B shows a fre-
quency of six, where the upper and lower line each contains three
cycles. The combined length of both lines was set to the circumfer-
ence of the corresponding RF pattern ( CRF), which was calculated
according to:

CRF ¼
Z 2p

0

��������������������������
r0 hð Þ2 þ r hð Þ

q
dh ð3Þ
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Fig. 1. Schematic of stimuli used in this study. The top row shows the LF and the
bottom row the RF stimuli used in this study. (A) and (C) illustrate the reference
patterns, i.e. two straight lines in the case of the LF stimuli and a circle in the case of
the RF patterns. For illustration purposes, both test patterns are shown with a
supra-threshold modulation amplitude and a frequency of six.

20 G. Schmidtmann, F.A.A. Kingdom / Vision Research 134 (2017) 18–25
The distance between the two lines was set to the diameter of
the RF patterns (1.43 � ). The phases of the sinusoidal modulations
for each line were randomly determined from trial to trial and
were different between the top and bottom line.
2.4. Procedure

The method of constant stimuli was employed in conjunction
with a temporal two-alternative forced choice paradigm. Observers
were presented with two patterns, a test and a reference (see
Fig. 1). The monitorÕs background was initially set to a mean
luminance (grey). Stimulus presentation time was 180 ms with a
Fig. 2. Detection thresholds for RF (magenta) and LF (green) patterns as a function of mo
angle (deg). The shaded regions represent 95% conÞdence intervals. (A) shows individual th
across subjects (solid data points, solid lines). The black solid line in (B) shows results by
in this Þgure legend, the reader is referred to the web version of this article.)
pre-and inter-stimulus interval of 400 ms. The task for the obser-
ver was to choose the test stimulus by pressing one of two keys
on a numeric keypad. The order of test and reference stimuli was
random. The spatial location of the stimuli was randomly varied
from trial to trial with a horizontal and vertical positional jitter
of ±0.36� with respect to the centre of the screen. Seven different
linearly spaced modulation amplitudes A were tested in each
experimental block. Each modulation amplitude was tested 30
times, leading to 210 measurements. Percent correct responses
were calculated and the resulting data were Þt with a Quick psy-
chometric function ( Quick, 1974 ) using a customized maximum-
likelihood procedure based on binomial proportions, using
MatLabÕsfminsearch function. Detection thresholds were deÞned
as the modulation amplitude yielding 75% correct responses. The
LF and RF patterns were tested in separate blocks. Observers usu-
ally completed two experimental blocks for each experimental
condition and their results were averaged.
3. Results

3.1. Radial frequency vs. line frequency stimuli

Fig. 2A shows detection thresholds expressed as the modulation
amplitude in degree visual angle as a function of modulation fre-
quency for RF (magenta) and LF (green) patterns. The graph shows
individual data presented by the empty data points (GS: s , MO: � ,
BJ:4 , SB:. ), as well as results averaged across subjects illustrated
by the solid data points and lines. The shaded regions represent
95% conÞdence intervals.

Detection thresholds for RF patterns decrease with increasing
frequency and asymptote at a frequency of about 6. For the lowest
frequencies ( x = 1), detection thresholds for RF patterns are on
average about 17 times higher than thresholds for LF patterns.
Detection thresholds for the LF patterns decreased with increasing
modulation frequency, but the decline is less pronounced at low
frequencies compared to RF patterns. Results were statistically
analyzed using a two-factor (stimulus type; frequency) repeated
measure ANOVA. This analysis revealed a statistically signiÞcant
interaction between stimulus type (RF, LF) and frequency
(F11,33 = 377, p < 0.001). Subsequent post hoc tests (Bonferroni
dulation frequency. Thresholds are expressed as modulation amplitu de in visual
reshold for each observer (N = 4; empty data points) as well as the data averaged

Wilkinson et al. (1998) for RF patterns. (For interpretation of the references to colour
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corrected) showed that thresholds for x = 1 and x = 2 were signif-
icantly different between RF and LF patterns (RF1: p < 0.001; RF2:
p < 0.01), but thresholds did not signiÞcantly differ between RF
and LF patterns for all other tested frequencies. In a control exper-
iment, detection thresholds for LF and RF patterns with modulation
frequencies of x = 20 and x = 30 were measured for two additional
observers. The data were statistically analyzed with a repeated
measure ANOVA with shape type (RF and LF) and modulation fre-
quency ( x = 20 and 30) as factors. Results show that thresholds are
not statistically signiÞcant between shape types ( F1,3 = 0.704,
p = 0.463) and frequency ( F1,3 = 2.807, p = 0.192).

In summary, detection thresholds for RF and LF patterns are
very different for frequencies between 1 and 2, across which they
decline (and rapidly for the RF pattern), coincide for frequencies
beyond 3Ð4 and asymptote for higher frequencies. The pattern of
results for RF patterns is consistent with previous results by
Wilkinson et al. (1998) . Their results for one subject (FW in their
Fig. 3) were converted into visual angle and are illustrated by the
solid black line in Fig. 2B. Note, that Wilkinson et al. (1998) used
RF patterns with a slightly smaller radius of 0.5 � . The results are
also similar to the results from Mullen et al. (2011) , who showed
that thresholds for radial frequencies were similar to those of line
stimuli. The thresholds were higher in Mullen et al.Õs study, most
likely due to their stimulus design (see Discussion for details).
3.2. Model

The aim of the current study is to provide a single model that
can explain the observed pattern of results for both RF and LF pat-
terns across the full range of frequencies ( x = 1Ð20). The model we
propose is based on curvature. For an LF pattern, curvature ( j LF) is
A

B

Fig. 3. Top (A), left: RF pattern; middle: LF pattern; right, curvature differences betwee
corresponding Þgures for x = 4. For illustration purposes, the modulation amplitudes A
above threshold. Angle is given in radians around the full circle of an RF. Min1, Min2 and M
curvature difference. The metric proposed to underlie detection is the largest Max-Min diffe
reader is referred to the web version of this article.)
based on the Þrst and second derivatives of Eq. (2), which are
respectively:

l0 hð Þ ¼Ax cos x hð Þ ð4Þ

and

l00hð Þ ¼ �Ax 2 sin x hð Þ ð5Þ

The curvature j LF of an LF pattern is then given by:

j LFðhÞ ¼
l00ðhÞ

1 þ l0 hð Þ2
� �� � 3=2

ð6Þ

The equation for the RF pattern is:

r hð Þ¼ rmean½1 þ Asinðx h þ uÞ� ð7Þ

By expanding Eq. (7) one can see that the modulation depth in
units of visual angle is given by rmean A, with A deÞned as a fraction
of rmean. In order to express A in the same units for both RF and LF
patterns we therefore set rmean to unity. The Þrst and second
derivatives for an RF pattern are then given by:

r0 hð Þ ¼Ax cos x h þ uð Þ ð8Þ

r00hð Þ ¼ �Ax 2sin x h þ uð Þ ð9Þ

and

j RF hð Þ ¼
r hð Þ2 þ 2r0ðhÞ2 � r hð Þr00hð Þ

ðr hð Þ2 þ r0ðhÞ2Þ
3=2

ð10Þ

Fig. 3 shows the dependence of the pattern of curvature difference
between the waveform and its underlying baseline (circle for RF,
n waveform and baseline (RF magenta, LF green); all for x = 1. Bottom (B),
for the x = 1 and x = 4 patterns were set to 0.5 and 0.1 respectively, which is well
ax1, Max2 (for RF1) and Max and Min (RF4) refer to local peaks an d troughs in
rence. (For interpretation of the references to colour in this Þgure legend, the



Shape Frequency

0.001

0.005

0.025

0.125

0.625

T
hr

es
ho

ld
 a

m
pl

itu
de

LF data
RF data

Wilkinson et al. (1998)

1 2 4 8 10 20

Fig. 5. The graph shows the single model Þts (solid lines) to both RF and LF data
(Þlled dots replotted from Fig. 2B). The black dotted line is the RF data from
Wilkinson et al. (1998) .

22 G. Schmidtmann, F.A.A. Kingdom / Vision Research 134 (2017) 18–25
straight line for LF) on the modulation frequency of the RF and LF
pattern. Fig. 3A (leftmost) shows an RF1 pattern with a modulation
amplitude of A = 0.5. At such a high amplitude it becomes clear that
the RF1 is a special case with respect to its curvature difference
along the waveform, which is presented in the rightmost graph
(magenta). Min and Max refer to the points of local minimum and
local maximum curvature. These points are also illustrated in the
rightmost graph, which shows the curvature difference between
the waveform and its baseline. The waveform of an LF1 pattern
(green) shown in the middle panel, on the other hand, has one point
of maximum and minimum curvature. This difference in the pattern
of minima/maxima between RF and LF patterns does not exist for
modulation frequencies higher than 1, as can be seen in Fig. 3B.
The modulation depths of the curvature differences differ substan-
tially between RF1 and LF1, with much smaller values for the for-
mer. For the F4 case the curvature difference modulation depth is
only slightly less for RF compared to LF.

Fig. 4A shows how a metric deÞned by the difference between
maximum and minimum curvature (referred to as: MaxÐMin cur-
vature) for both RF (magenta) and non-RF stimuli (green) changes
as a function of modulation frequency, this time for a Þxed modu-
lation amplitude of A = 0.01 and an rmean of unity. It is evident that
this curvature-based metric predicts the pronounced difference
between RF and LF patterns for the low frequency range ( x = 1Ð
2) as well as the subsequent convergence of thresholds at higher
frequencies, consistent with the observed pattern of results. How-
ever, the metric does not explain the asymptotic thresholds at
higher modulation frequencies. To account for this asymptotic
behavior, we introduce the Curve Frequency Sensitivity Function,
or CSFF, which is characterized by a ßat followed by declining
response to curvature as a function of modulation frequency. The
decline in response to curvature at high modulation frequencies
embodies the idea of a perceptual limitation for high curve fre-
quencies, and is illustrated in Fig. 4B.

The CFSFis deÞned as:

CFSF¼ 1 þ
x
a

� � 2
� � � b

ð11Þ

an equation based on a formula for the mean radial modulation
transfer function provided by Watson (2013) , where x refers to
the modulation frequency and a and b are constants. To incorporate
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CFSF. The overall model has three free parameters, the constants a, b
in Eq. (11) and the Max-Min curvature amplitude threshold. In
order to determine the model thresholds TM the following term
was minimized using the PAL_minimize function in the Palamedes
Toolbox ( Prins & Kingdom, 2009 ):

TM ¼
X MLF � DLF

DLF

� � 2

þ
X MRF � DRF

DRF

� � 2

ð12Þ

where M refers to the model and D to the data. It is very important
to emphasize that a single model is Þtted simultaneously to both
the LF and RF data. The three Þtted free parameters of the model
are the Max-Min curvature amplitude threshold = 0.0287, and the
two CFSF (Eq.(11) ) parameters a = 2.82 and b = 0.9605. The model
Þts are shown in Fig. 5. The model captures the initial large thresh-
old difference between RF and LF patterns for low modulation fre-
quencies, as well as the subsequent deceleration with increasing
1 2 4 8 10 20
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frequency. The goodness of Þt between the model and the data was
evaluated by calculating the coefÞcient of determination R2. R2 for
the single Þt to both LF and RF data is 0.996. For the same single
Þt (i.e. to both LF and RF data), R2 for the LF data alone is 0.989
and for the RF data alone 0.999. Note that R2 compares relative
sizes, not absolute sizes. Despite the very high values of R2, there
is a modest, systematic mismatch between the model and the data,
namely, the model underestimates the experimental RF thresholds,
especially in the 2Ð4 range of shape frequency.
4. Discussion

The aim of the current study is to demonstrate that a model
based on the detection of curvature differences can explain the
observed pattern of thresholds for both RF and LF patterns across
the full range of frequencies. We showed that a combination of
two model features, Þrst curvature detection, second a function
that describes how sensitivity to curvature falls with curvature fre-
quency, gave a good account of performance with both types of
pattern. Our model was Þt simultaneously to both RF and LF data,
i.e. with no parameter differences.

The curvature based model proposed here has the advantage
that it explains both RF and LF detection thresholds across the full
range of modulation frequency. Previous studies have either sug-
gested different model variants for RF and LF patterns modelled
across a narrow range of modulation frequencies ( Mullen et al.,
2011), or, in the case of RF patterns, two separate mechanisms,
one for low and one for high radial frequencies ( Jeffrey et al.,
2002; Lofßer et al., 2003; Schmidtmann et al., 2012 ). The latter
dual-mechanism RF model gained support from the observation
that global pooling, not probability summation, was evident for
low radial frequencies (RF3, RF5 and partially for RF10, Lofßer
et al., 2003), but not for higher radial frequencies (e.g. RF24). How-
ever, as we noted in the Introduction, a note of caution comes from
Baldwin et al. (2016) who showed that, when modelled under Sig-
nal Detection Theory, probability summation can not be rejected as
a model of RF summation, even for low modulation frequencies
(x = 4).

That curvature is the feature underpinning RF detection Þnds
expression in a number of early models of single curve detection/
discrimination ( Watt & Andrews, 1982; Wilson, 1985; Wilson &
Richards, 1989) as well as later models explicitly dealing with RF
shapes (Dickinson et al., 2013; Kempgens et al., 2013; Poirier &
Wilson, 2006 ). In the latter models the location of points of maxi-
mum curvature around the RF are encoded and form the input to
the Þnal stage that encodes the RFÕs global shape. Our model calcu-
lates the difference between maximum and minimum curvature.
We speculate that this might occur at intermediate levels of visual
processing involving mechanisms that calculate curvature over a
1/2 cycle centered on the maxima/minima, as suggested by psy-
chophysical shape adaptation studies using suprathreshold-shape
stimuli ( Gheorghiu & Kingdom, 2007, 2009 ). This is in keeping with
functional magnetic resonance imaging (fMRI) studies showing
that radial and concentric gratings ( Wilkinson et al., 2000 ), as well
as Gabor ßow-Þelds containing contours ( Dumoulin & Hess, 2007 ),
evoke stronger responses at intermediate level visual areas V3 and
hV4 compared to areas V1 or V2. More recently, Salmela,
Henriksson, and Vanni (2016) investigated RF shape representation
using a multi-voxel pattern analysis and suggested that the RF
speciÞc representations are in areas V2d, V3d, V3AB, and IPS0,
not hV4 or LO. The above differences in fMRI studies are most likely
due to the analysis approach. The advantage of multi-voxel pattern
analysis is that the multidimensional pattern of activity across vox-
els contains more information compared to averaged one-
dimensional measures ( Kriegeskorte & Kievit, 2013; Kriegeskorte,
Mur, & Bandettini, 2008 ). In addition, the searchlight-based proce-
dure employed by Samela et al. makes no assumptions with
respect to where the activation pattern should occur
(Kriegeskorte, Goebel, & Bandettini, 2006 ).

It is important to bear in mind that our model is agnostic to
whether the curvature information from each cycle of the pattern,
whether LF or RF, is pooled additively into a global detection mech-
anism or combined by probability summation. In fact, our model
involves no pooling of curvature-difference information across
the stimulus. An anonymous reviewer correctly pointed out that
our model could incorporate summation of curvature-differences
across the various cycles of the waveforms, and indeed this would
have been more realistic. However, if we were to incorporate either
additive or probability summation for the two types of pattern, the
effect would only be to change the values of the parameters of the
CFSF when Þt to the data. The CFSF model proposed here embodies
the effects of summation (whether additive or probability) in the
same way that a model of the high-frequency decline in grating
contrast sensitivity for gratings with Þxed spatial extent also
embodies summation.

Although the model itself is agnostic to the form of summation,
the fact that it captures both LF and RF data is not however incon-
sequential to the issue. We have already noted the many studies of
RF detection that have come out in favour of a global mechanism.
However, because we Þnd that LF patterns, for which a global
detection mechanism seems inherently unlikely, can be modelled
similarly to RF patterns, we draw the more conservative conclusion
that a dedicated global integration stage is also not involved in the
detection of RF shapes.

The CFSF is key to accounting for the ßattening of thresholds at
intermediate and high frequencies. How does this compare to
Poirier and WilsonÕs (2006) explanation of the ßattening? Poirier
& Wilson modelled their RF data using an intermediate stage com-
prising two broadly-tuned curvature sensitive mechanisms, one
tuned to low, one to high RFs. The model threshold at each point
along the frequency axis was that of the mechanism giving the
lowest threshold, and this gave a good account of the ßattening.
Similarly, our CFSF may be considered as an umbrella describing
the relative sensitivity to curvature of a number of curvature-
sensitive mechanisms, the exact number of which we cannot spec-
ify. It is worth emphasising, however, that in our scheme the
curvature-sensitive Þlters sensitive to the lowest frequencies are
the ones with the highest sensitivity, and that the reason why
the thresholds are so high at these points, especially for the RFs,
is because of the relatively small values of physical curvature
(per amplitude) in the stimuli.

The idea of a CFSF should not be deemed controversial. For
every other dimension of our visual experience for which a modu-
lation sensitivity function has been measured, whether luminance
contrast, chromatic contrast, texture contrast, depth contrast, tem-
poral contrast etc., sensitivity exhibits a high-frequency decline,
the frequency at which the decline begins being dependent on
the particular dimension in question as well as a range of spatial
(e.g. eccentricity, age, light level etc.) and temporal (e.g. temporal
frequency) factors. Doubtless too curvature. The half-cycle con-
tours in our LF and RF patterns become increasingly shorter as
modulation frequency increases, so it should not be surprising that
the neural machinery that detects them also becomes increasingly
less effective at representing them.

4.1. Limitations of model

Unlike some previous models of RF detection such as Poirier
and WilsonÕs (2006) and Kempgens et al.Õs (2013), which are
Þlter-based models inspired by physiology, our model is based
on the geometrical or mathematical properties of LF and RF pat-
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