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Abstract 22 

Ocean acidification will likely change the structure and function of coastal marine ecosystems over 23 

coming decades. Volcanic carbon dioxide seeps generate dissolved CO2 and pH gradients that provide 24 

realistic insights into the direction and magnitude of these changes. Here, we used fish and benthic 25 

community surveys to assess the spatio-temporal dynamics of fish community properties off CO2 seeps 26 

in Japan. Adding to previous evidence from ocean acidification ecosystem studies conducted elsewhere, 27 

our findings documented shifts from calcified to non-calcified habitats with reduced benthic complexity. 28 

In addition, we found that such habitat transition led to decreased diversity of associated fish and to 29 

selection of those fish species better adapted to simplified ecosystems dominated by algae. Our data 30 

suggest that near-future projected ocean acidification levels will oppose the ongoing range expansion of 31 

coral reef-associated fish due to global warming.  32 

Keywords: carbon dioxide, biogenic habitat complexity, scleractinian coral cover, reef-associated fish 33 

 34 

 35 

1. Introduction 36 

 37 

Shifts in marine biogenic habitats in response to anthropogenic activities and a range of stressors have 38 

been documented since the 1960s (Hughes 1994). In tropical coral reef ecosystems examples include 39 

studies of the impacts of overfishing (Jackson et al. 2001), outbreaks of coral-eating predators (De’ath et 40 

al. 2012), diseases (Hughes 1994), pollution (McCulloch et al. 2003), hurricanes (Hughes 1994), and 41 

extreme temperatures (Hoegh-Guldberg 1999). Ocean warming is changing coastal marine communities, 42 

for example due to (1) warm-water species (e.g. corals and tropical fish) moving poleward following 43 

their thermal physiological niche, (2) changes in the strength of interspecific interactions (e.g. increase 44 

of herbivory from warm-water fish leading to the loss of kelp forests at their low latitude limits), and (3) 45 

a decrease in biogenic habitat complexity (e.g. Vergès et al. 2014, 2016; Hall-Spencer & Harvey 2019). 46 

Ocean Acidification (OA), the alteration of seawater carbonate chemistry due to rising atmospheric CO2 47 

concentrations, adds an extra set of stressors to those caused by warming. Meta-analyses show that 48 
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decreased seawater pH due to OA may impair calcification and accelerate dissolution for many calcifying 49 

habitat-formers, while rising pCO2 levels may enhance the primary production and carbon fixation rates 50 

of non-calcifying autotrophs (Falkenberg et al. 2013; Harvey et al. 2013; Kroeker et al. 2013; Wittmann 51 

and Pörtner 2013). As a result, there will be losers and winners under OA conditions, with effects on 52 

ecosystems documented along gradients in seawater pH at CO2 seeps around the world (e.g., Hall-53 

Spencer et al. 2008; Fabricius et al. 2011) including reductions in habitat complexity, shifts in 54 

competitive interactions and changes in species dominance.  55 

While CO2 seeps are not perfect analogues for ocean acidification (e.g., Fabricius et al. 2017), they 56 

nevertheless comprise one of the very few field-based tools available to assess OA effects on ecosystems 57 

and communities (Hall-Spencer and Harvey 2019). To date, our knowledge about the ecosystem effects 58 

of OA is advancing rapidly with increasing evidence from temperate (Hall-Spencer et al. 2008; 59 

Nagelkerken et al. 2015; Milazzo et al. 2019), subtropical (Agostini et al. 2018) and tropical (Fabricius 60 

et al. 2011, 2014; Inoue et al. 2013; Enochs et al. 2015) CO2 seeps. The responses of biogenic habitats 61 

to OA differ regionally. Shifts from diverse to depauperate scleractinian species assemblages and from 62 

hard to soft coral communities have been observed in Papua New Guinea (Fabricius et al. 2011), Palau 63 

(Barkley et al. 2015) and in Southern Japan (Inoue et al. 2013). As carbon dioxide levels increase, there 64 

is a shift in community dominance from corals to seaweeds in the Northern Mariana Islands (Enochs et 65 

al. 2015) and at a subtropical-temperate transition zone in Japan (Agostini et al. 2018). How such OA-66 

induced habitat shifts affect fish requires further study as most work at CO2 seeps to date at has focused 67 

on bacteria, algae and invertebrates (Hall-Spencer et al. 2008; Fabricius et al. 2014; Sunday et al. 2017; 68 

Milazzo et al. 2019). 69 

Very few attempts have been made to estimate the effects of OA-induced habitat simplification on fish 70 

communities (Munday et al. 2014; Nagelkerken et al. 2015, 2017). A study at three CO2 seeps in Papua 71 

New Guinea reported reduced coral reef complexity at elevated CO2 respect to control sites. However, 72 

https://paperpile.com/c/agmqjs/ymsF
https://paperpile.com/c/agmqjs/ymsF
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there was no difference in fish species richness between seep and control sites, and no difference in fish 73 

community structure at two out of the three seep-control groups examined (Munday et al. 2014). The 74 

only slight differences detected in fish community structure were mostly driven by small-bodied fish 75 

species showing strong habitat preferences (Munday et al. 2014). In another paper, Nagelkerken et al. 76 

(2015) documented shifts from kelp/macroalgae and seagrass to low-relief turf-algae at temperate CO2 77 

seeps that seemed to cause a loss of fish predators and predatory release of prey fish species, even though 78 

their antipredator responses were compromised.  79 

At present, how ocean warming and acidification will affect ecosystem properties and functioning is still 80 

under debate. Some modelling attempts suggest that declines in aragonite saturation state (Ωarag) will 81 

limit the poleward expansion of tropical coral reefs that is underway due to ongoing warming (Yara et 82 

al. 2012; van Hooidonk et al. 2014), as will insufficient light in winter for coral algal symbiont 83 

photosynthesis (Muir et al. 2015). 84 

Here, we evaluate the temporal consistency of changes in fish communities in response to biogenic 85 

habitat shifts off CO2 seeps located in the NW Pacific (Japan), in a region that has naturally low levels 86 

of pCO2, high carbonate saturation levels and elevated local seawater temperatures (Midorikawa et al. 87 

2005). These conditions allow the coexistence of both canopy-forming macroalgae and scleractinian 88 

coral communities at ambient CO2 conditions, while a transition to low-relief algal turf habitats occurs 89 

at elevated CO2 levels (Agostini et al. 2018; Harvey et al. 2019). To assess how fish community 90 

properties changed spatially along the pCO2 gradient, we coupled fish and benthic community 91 

assessments (habitat complexity, canopy height, and % cover), along a CO2 gradient and at control sites 92 

off Shikine Island (Eastern Japan). The study was carried out over two time periods (June and September) 93 

to investigate whether the effects of OA-mediated habitat shifts on fish community composition and 94 

structure are temporally consistent, specifically when acute seasonal typhoons (usually from July to 95 

September), may affect benthic community structure and habitat complexity. In addition, we carried out 96 

https://paperpile.com/c/agmqjs/5lt0
https://paperpile.com/c/agmqjs/5lt0
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fish trait comparisons between the different CO2 sites, to assess changes in taxonomic richness and 97 

abundance of fish subdivided by geographic distribution (Tropical, Subtropical and Temperate), trophic 98 

guilds (Carnivore, Omnivore, Herbivore and Planktivore) and affinity to coral reef habitats.  99 

We expected that fish communities would change in composition and structure as a result of decreasing 100 

habitat complexity along a spatial CO2 gradient and that these changes would be consistent over time. 101 

Since it has been suggested that OA may decrease overall habitat complexity (e.g. from complex corals 102 

and canopy-forming algae to low-profile algae and turfs; Sunday et al. 2017), we expected that fish 103 

community species richness would decrease with increasing levels of CO2. As CO2 enrichment acts both 104 

as a stressor for scleractinian corals and as a substrate for primary producers, we also expected that the 105 

number of species of fish from tropical and subtropical origins would decrease, while the diversity of 106 

herbivorous fish would increase in elevated CO2 conditions. 107 

 108 

2. Materials and Methods 109 

 110 

2.1 Study sites and carbonate chemistry 111 
 112 

Shikine is a volcanic island east of the Izu peninsula in Japan (34° 19' 9" N, 139° 12' 18" E) with many 113 

CO2 seeps in shallow waters. Based on previous geochemical investigations (Agostini et al. 2015), our 114 

survey locations were selected to avoid potentially confounding geochemical factors (e.g. high sulfides, 115 

negative redox potential, altered total alkalinity and elevated temperature). One location (Elevated-CO2) 116 

was within Mikawa Bay and a second location (Control) characterised by ambient CO2 conditions was 117 

positioned in an adjacent bay with similar depths (3-12 m), and exposure to wind and currents (Fig. 1).  118 

To document spatial variation in the carbonate chemistry, a WQC24 multi-parameter logger (DKK-TOA 119 

Corporation, Tokyo, Japan) and a HydroC® CO2 II sensor (Contros System & Solutions GmbH, 120 

Germany) were deployed between 9:00 am and 3:00 pm by scuba divers along four and five 100-m 121 
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transects in the Elevated- and Control CO2 locations, respectively (Fig. 1). Every 10 meters the seawater 122 

pH (NBS scale), temperature (T, °C), salinity, and depth (m) were recorded for 5 minutes with the DKK-123 

TOA, whilst the HydroC® CO2 II sensor recorded measures of pCO2 (µatm) every 5 seconds. The CO2 124 

sensor detects dissolved CO2 molecules that diffuse through a thin film composite membrane into an 125 

internal gas circuit containing a detector chamber where the pCO2 is determined by means of an IR 126 

absorption spectrometer. Both loggers were positioned at 1 meter from the sea-bottom at an average 127 

depth range of 3-12 meters, and were attached to a floating buoy equipped with a GPS (eTrex30x, 128 

Garmin) to record the exact position of each measurement. Total alkalinity (TA) was measured from 129 

seawater samples collected underwater at each location (N = 24 in June; N = 25 in September). Water 130 

samples were immediately filtered at 0.45 μm using disposable cellulose acetate filters (Dismic, 131 

Advantech, Japan) and stored at room temperature in the dark (for no more than one week) until 132 

measurement. TA was measured by titration (TiTouch i915, Metrohm) with HCl at 0.1 mol l-1, and 133 

calculated from the Gran function between pH 4.2 and 3.0. The titrations were cross-validated using a 134 

working standard (SD: ± 9 μmol kg-1) and against certified reference material purchased from the A.G. 135 

Dickson laboratory (Batch 152). The CO2SYS software (Pierrot et al. 2006) was used to calculate pCO2 136 

(Table 1) from T, pH, salinity and TA values, and to control in situ continuous measurements of pCO2 137 

recorded by the HydroC® CO2 II sensor. The disassociation constants from Mehrbach (1973), as adjusted 138 

by Dickson and Millero (1987), HSO4 using Dickson (1990), and total borate concentrations from 139 

Uppström (1974) were used for carbonate chemistry calculations (Table 1). The HydroC® CO2 II sensor 140 

was not employed in the September survey due to logistic constrains. 141 

The carbonate chemistry measurements along the nine 100-m transects were used to identify five 142 

sampling CO2 sites in the rocky subtidal zone between 3 and 12 m depth in Mikawa bay and the Control 143 

bay: one ‘High-CO2’ (High), one ‘Mid-CO2’ (Mid) and one ‘Low-CO2’ (Low), and two ‘Ambient-CO2’ 144 

https://paperpile.com/c/agmqjs/lLCS
https://paperpile.com/c/agmqjs/qKf2/?noauthor=1
https://paperpile.com/c/agmqjs/lO21/?noauthor=1
https://paperpile.com/c/agmqjs/SwvL/?noauthor=1
https://paperpile.com/c/agmqjs/D2Eg/?noauthor=1
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(Ref 1 and Ref 2; Fig. 1; Table 1). In each CO2 site, both the benthic habitats and the fish communities 145 

were characterised as detailed below. 146 

 147 

Table 1 - Seawater chemistry of the subtidal sampling sites off Shikine Island. Values from June and September 148 

surveys are reported as mean (±SD). Minimum (Min) and maximum (Max) pCO2 values are also reported. 149 
pCO2 calc.= pCO2 levels calculated with CO2SYS. pCO2 meas.= pCO2 levels measured with the HydroC® 150 

CO2 II logger. 151 

a) June 2016 

CO2 

location 

CO2 

site 

Salinity T °C pH 

nbs 

n (pH) TA (µmol 

kg−1) 

pCO2 calc. 

(µatm) 

pCO2 meas. 

(µatm) 

n (pCO2 

meas.) 

Elevated High 34.5 

(0.05) 

19.9 

(0.5) 

7.87 

(0.15) 

11 2249.9 971.7 (434.0) 

Min:591.8 

Max:2062.1 

952.8 (450.8) 

Min:567.7 

Max:2360.4 

417 

Elevated Mid 34.6 

(0.07) 

19.4 

(0.5) 

8.09 

(0.05) 

17 2253.4 497.2 (72.6) 

Min:373.8 

Max:645.8 

552.1 (188.2) 

Min:368.2 

Max:1552.1 

843 

Elevated Low 34.7 

(0.05) 

19.5 

(0.7) 

8.16 

(0.05) 

16 2270.5 404.9 (54.8) 

Min:361.2 

Max:523.2 

402.1 (53.4) 

Min:358.0 

Max:591.1 

555 

Control Ref 1 34.7 

(0.05) 

18.9 

(0.3) 

8.21 

(0.01) 

28 2253.1 348.2 (10.6) 

Min:322.0 

Max:367.6 

347.9 (13.9) 

Min:307.2 

Max:373.8 

994 

Control 

Ref 2 
34.8 

(0.05) 

19.5 

(0.2) 

8.25 

(0.03) 
27 2250.8 

311.5 (29.3) 

Min:255.4 

Max:356.7 

311.8 (29.1) 

Min:251.9 

Max:357.8 

913 

  
  

      

b) September 2016 

CO2 

location 

CO2 

site 
Salinity  T °C 

pH 

nbs 
n (pH) 

TA (µmol 

kg−1) 
pCO2 calc. (µatm) 

Elevated 
High 

33.9 

(0.1) 

26.0 

(0.1) 

7.65 

(0.09) 
4 2267.8 1646.4 (397.3) Min:1220.9 Max:2026.5 

Elevated 
Mid 

33.9 

(0.2) 

25.1 

(1.0) 

7.91 

(0.12) 
6 2257.3 

849.7 (291.0) Min:524.4 Max:1372.0 

Elevated 
Low 

33.9 

(0.0) 

25.6 

(0.1) 

8.13 

(0.01) 
4 2269.3 

459.3 (12.7) Min:442.7 Max:473.1 

Control 
Ref 1 

33.9 

(0.2) 

26.3 

(1.4) 

8.18 

(0.01) 
4 2249.9 

395.4 (11.9) Min:379.3 Max:407.8 

Control 
Ref 2 

33.9 

(0.2) 

26.2 

(1.7) 

8.16 

(0.01) 
4 2249.5 

420.8 (13.6) Min:409.2 Max:439.8 

 152 
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 153 

2.2 Benthic habitat characterisation 154 
 155 

Average canopy height and percentage cover (% cover) of benthic taxa were recorded in the June and 156 

September surveys along 25 m strip transects positioned in the five CO2 sites (High, Mid, Low, Ref1 and 157 

Ref2). Specifically, four transects were deployed in the ‘High-CO2’site (High), six transects within the 158 

‘Mid-CO2’ (Mid) site, six transects within the ‘Low-CO2’ (Low) site, and nine transects each in the two 159 

‘Ambient CO2’ sites (Ref1 and Ref2; Fig. 1). Within each 25 m benthic transect, the canopy height was 160 

measured every meter using the point-intercept method, and a Biotic Habitat Profile (BHP) ratio was 161 

estimated as a proxy of biotic complexity. BHP, conceptually similar to the well-established chain 162 

method, was calculated a posteriori by dividing the contoured distance following the measured canopy 163 

profile by the linear distance (i.e. 25 meters).  164 

The % cover of benthic taxa was assessed in ten photoquadrats, positioned at ca. 5 meters apart along 165 

each 25 meter transect. An Olympus Stylus Tough TG3 with a PT056 camera housing was mounted on 166 

a 1 x 1 m frame. The % cover was estimated using the open-access software Image-J 167 

(http://rsb.info.nih.gov/ij/; Schneider et al. 2012) by tracing the 2-dimensional outline of each benthic 168 

morphological taxon. For each photoquadrat the % cover of the following benthic groups was recorded: 169 

Turf algae, crustose coralline algae (CCA), Non-Canopy-forming fleshy algae (<5 cm canopy height), 170 

Canopy-forming algae (≥ 5 cm canopy height), Caulerpa chemnitzia var. peltata, Table corals, Soft 171 

Corals, Encrusting Corals, Massive Corals (i.e. boulder corals with massive growth forms), Anemones 172 

and Sponges. 173 

 174 
2.3 Fish surveys 175 

Species composition and relative abundance of fish were visually censused within standard linear 25x5 176 

m transects (Harmelin-Vivien et al. 1985). A total of 73 and 37 transects were carried out on June and 177 

http://rsb.info.nih.gov/ij/
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September 2016, respectively. Fish transects were located haphazardly within each sampling CO2 site at 178 

4-10 m depth, and were conducted between 09.00 am and 03.00 pm by a scuba diver leaving behind a 179 

25 m measure tape, while counting and identifying all the fish encountered 2.5 m either side of the tape 180 

(125 m2; Harmelin-Vivien et al. 1985). Water visibility exceeded 15 m for all counts. Each sampling day, 181 

only two spatially separated transects (at >20 m distance each other) were gathered at each CO2 site to 182 

avoid temporal dependence of data (Stewart-Oaten et al. 1986).  183 

To make trait-mediated comparisons among different CO2 conditions, the different fish species were also 184 

subdivided by geographical origin (Tropical, Subtropical and Temperate), by trophic guild (Carnivore, 185 

Omnivore, Herbivore and Planktivore), and by their association with coral reefs (i.e. coral reef associated 186 

and non-associated species) following Nakamura et al. (2013) and FishBase (http://www.fishbase.org/).  187 

2.4 Data analyses 188 
 189 

Changes in benthic habitat composition among CO2 sites were analysed using non-metric 190 

multidimensional scaling technique (nMDS) and tested with Permutational Multivariate Analysis of 191 

Variance (PERMANOVA; Anderson and Braak 2003) using the software PRIMER 6 and 192 

PERMANOVA+ β3 package (Clarke and Gorley 2006). The analysis was performed on Bray-Curtis 193 

measures in a multivariate context of untransformed % cover data, using 9999 permutations of the 194 

appropriate units. Two fixed factors were considered: “CO2 site” with 5 levels (High, Mid, Low, Ref 1 195 

and Ref 2) and “Season” with two 2 levels (June and September). 196 

To identify the relevant variables characterising the benthic habitat which were responsible for the 197 

variation in fish community structure and composition, we used a Multivariate Distance Based Linear 198 

Model [DISTLM, Anderson et al. 2008]. Both the fish community and the benthic datasets were square 199 

root transformed and the step-wise model selection method based on the AIC criterion was performed to 200 

assess the benthic variables related with Bray-Curtis resemblance matrix of the fish dataset. To visualise 201 

http://www.fishbase.org/
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the fish community data as a biplot, the Distance-based redundancy analysis (dbRDA; Legendre and 202 

Anderson 1999; McArdle and Anderson 2001) using the benthic variables identified by the DISTLM 203 

routine was used. 204 

To investigate the potential relationship between pCO2 and habitat complexity (as BHP index, log 205 

transformed) we used an Additive Mixed Model (AMM) with a Gaussian distribution and the identity 206 

link. AMM was used because it allows for the modelling of the non-linear effects of continuous 207 

explanatory variables by incorporating smooth functions (Wood 2011). Specifically, the cubic regression 208 

spline was used as a one-dimensional non-parametric smoothing function and the number of knots k was 209 

set to 6, to prevent the models from producing complex non-linear relationships of little biological 210 

significance (Wood 2006). To account for the lack of independence of the BHP data of the same Site per 211 

Season we used Site x Season as random intercept, which is assumed to be normally distributed with 212 

mean 0 and variance σ2. Data for both sampling campaigns (June and September) were combined into a 213 

single data set and Season was modelled as a factor. The model was fitted using maximum likelihood 214 

(ML) parameter estimation. The analysis was performed using the R package ‘mgcv’ (Wood 2011). 215 

We also used a method derived from meta-analysis to assess the effects of the different CO2 conditions 216 

on the number (S) and abundance (N) of fish species, also considering their classification by geographical 217 

distribution (Sorigin), trophic guild (Ntrophic) and coral reef association (Scoral). To this aim, we calculated 218 

the effect size (a metric that quantifies the difference between the control and experimental groups) as 219 

the response ratio, i.e. the natural logarithm of the ratio between the averaged response variable values 220 

(S, N, Sorigin, Ntrophic, Scoral) recorded at the Elevated CO2 (High, Mid and Low CO2 sites) and Control 221 

(Ref1 and Ref2 sites) locations. These analyses were performed using the R (R Core Team 2018) package 222 

'metafor' (Viechtbauer 2010). 223 

 224 

https://link.springer.com/article/10.1007/s10584-014-1194-0#CR60
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3. Results and Discussion 225 

 226 

Benthic communities changed from rocky habitats dominated by scleractinian corals and canopy-forming 227 

macroalgae to rocky reefs covered in low-profile and turf algae from Control (Ref1 and Ref2) to Elevated 228 

CO2 sites (Low, Mid and High) and this observation was consistent in both of the considered time periods 229 

(Fig. 2; PERMANOVA: CO2 site x Season, Pseudo-F= 7781.2; P(perm)=0.0001). Composition and 230 

structure of benthic communities did not differ between sites within ambient CO2 condition both in June 231 

(i.e., Ref1 = Ref 2; Pair-wise T test, t= 1.52; P(perm)=0.08) and September (Pair-wise T test, t= 1.20; 232 

P(perm)=0.28) surveys, whilst they did significantly differ in most of the pair-wise comparisons of sites 233 

within the elevated CO2 sites (Table S1).  234 

Table, massive and encrusting corals were common at control sites in both sampling periods. They are 235 

able to survive at this high latitude (34° N) in the NW Pacific due to the warm northward flow of the 236 

Kuroshio Current (Veron and Minchin 1992). Hard corals were absent along transects taken at elevated 237 

CO2 conditions. In contrast to some other CO2 seep systems (Suggett et al. 2012; Inoue et al. 2013), soft 238 

corals were rare and were absent in our elevated CO2 transects. Instead, dense mats of Caulerpa 239 

chemnitzia var. peltata and the diatom Biddulphia biddulphiana covered most of the rocky substrata at 240 

the elevated CO2 sites in June. These species were not seen in our transects in September, often revealing 241 

a covering of crustose coralline algae or low profile turf algae on the rocks (Fig. 2). As recently suggested, 242 

this was likely due to strong wave energy during typhoon activity that occurs in summer and early autumn 243 

(from late July to early October each year) on Shikine Island (Harvey et al. 2019). This major seasonal 244 

habitat shift resulted in an overall loss of canopy height due to the increase in the abundance of a few 245 

low profile algal and turf species which may outcompete large and slow‐growing species under ocean 246 

acidification conditions (Harley et al. 2012; O’Brien & Scheibling 2018; Harvey et al. 2019). The ability 247 

of a few opportunistic species to withstand OA effects, benefit from CO2 enrichment and displace 248 

https://paperpile.com/c/agmqjs/5lt0
https://onlinelibrary.wiley.com/doi/full/10.1111/jpy.12922#jpy12922-bib-0034
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dominant habitat-forming species (such as canopy-forming algae or coral early stages), has been 249 

previously documented (e.g. Connell et al. 2018; Agostini et al. 2018) and can be attributed to stunted 250 

successional development (Gaylord et al. 2015).  251 

Previous CO2 seeps studies revealed both detrimental and no effects of elevated CO2 levels on the eco-252 

physiological and behavioral performances of fish (e.g. Munday et al. 2014; Nagelkerken et al. 2015; 253 

Milazzo et al. 2016; Cattano et al. 2017; Di Franco et al. 2019). Here we focus on fish responses at the 254 

community level.  255 

Fish assemblages changed significantly between sites along the CO2 gradient, and between elevated CO2 256 

and reference sites. The DISTLM procedure revealed differences in fish assemblage composition and 257 

structure, and identified five variables that best explained such patterns: the table and massive corals, the 258 

turf, the non-canopy forming algae and the CCA. The dbRDA ordination of the dataset constrained by 259 

these variables showed that the difference in the fish communities along the CO2 gradient was best 260 

explained by turf, massive and non-canopy algae, while the differences between June and September 261 

were best explained by table corals and CCA (Fig. 3). Thus, the clear change of fish communities from 262 

ambient to elevated CO2 conditions was associated with a biogenic habitat shift under OA conditions.  263 

To date, few studies have documented the effects of OA-induced habitat changes on the structure and 264 

composition of fish communities. Munday et al. (2014) found that fish communities differed little 265 

between CO2 seeps and nearby control reefs in Papua New Guinea, suggesting that such similarities were 266 

due to the contribution of highly mobile fish species, which are able to move in and out of small CO2 267 

seep areas. The few observed differences in the abundance of certain fish species were related to coral 268 

community changes (from branched to massive corals) between CO2 exposed and un-exposed reefs (see 269 

Fabricius et al. 2014) rather than by the direct effects of high CO2 on fish. Nagelkerken et al. (2015) 270 

described habitat characteristics and fish species composition at two different CO2 seeps, documenting 271 

predator reductions and habitat shifts at elevated CO2 conditions, which together led to an increase of a 272 
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few territorial fish species. A more recent study carried out off the White Island CO2 seeps in New 273 

Zealand documented loss of fish diversity and homogenisation of fish communities under OA conditions, 274 

suggesting that elevated CO2 indirectly boosted the abundance of a single species thus altering the 275 

competitive relationships among species and suppressing the abundance of the competitive subordinates 276 

(Nagelkerken et al. 2017). Contrary to these previous studies, where fish community differences between 277 

CO2 exposed and unexposed reefs were evaluated focusing on a few species with narrow home ranges, 278 

here we compared the structure and the composition of entire fish communities finding significant 279 

differences among the four CO2 conditions considered.  280 

The effects of OA on fish communities may depend on how elevated CO2 affects the different species 281 

directly and indirectly. By altering acid-base balance and the processing of sensory information, elevated 282 

CO2 concentrations affect physiological and behavioural performance in fish, although such effects are 283 

species- and trait-specific (reviewed in Cattano et al. 2018). In addition, by promoting shifts in biogenic 284 

habitat (Milazzo et al. 2019), habitat simplification (Sunday et al. 2017) and food web simplification 285 

(Fabricius et al. 2014; Vizzini et al. 2017), high CO2 conditions may indirectly affect some fish species, 286 

especially those with highly specialised habitat and resource use. Conversely, generalist species could 287 

cope better with the predicted effects of OA on habitat and resources (e.g. Wilson et al. 2008a). This 288 

inter-specific variability in the extent to which fish may respond to OA-driven habitat modifications 289 

could play a role in shaping the direction of community shift and the composition of novel fish 290 

communities under elevated CO2 conditions (Nagelkerken et al. 2017).  291 

Our findings support the prediction that OA simplifies habitat composition and reduces habitat 292 

complexity (Sunday et al. 2017). Biogenic habitat complexity (BHP) decreased with increasing pCO2 293 

levels, in a non-linear relationship (Fig. 4a). When looking at model residuals including both seasons, 294 

habitat complexity was high at pCO2 values below ~500 µatm, whilst this relationship was significantly 295 

negative for values up to ~ 1000 µatm (i.e. decreased complexity with increasing pCO2), after which no 296 
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significant effects were detected probably due to the low sample size (Fig.4b). Overall, this trend was 297 

consistent in the two sampling campaigns (Fig. 4c). The minimum index values were reached between 298 

~500 and ~1000 µatm, where table corals disappeared being replaced mainly by turf, non-canopy algae 299 

and Caulerpa chemnitzia var. peltata, and where the only calcifying groups were represented by CCA or 300 

a few encrusting corals. The consistent complexity reduction in the elevated CO2 sites compared to 301 

control conditions matches the habitat shift from corals and canopy-forming macroalgae to turf 302 

dominated reefs, which indeed provides fewer structure and habitat functions than corals (Filbee-Dexter 303 

and Wernberg, 2018). Such transition to less complex habitats may lead to the loss of a suite of resources 304 

for fish (e.g. food and space availability) and to the alteration of important ecological processes, such as 305 

foraging, settlement and predation avoidance. OA research in CO2 seeps has documented altered 306 

properties and non-linear responses for invertebrate communities along CO2 gradients (e.g. Fabricius et 307 

al. 2014; Milazzo et al. 2019), whilst no effects were detected in fish communities despite lower habitat 308 

complexity under elevated CO2 conditions (Munday et al. 2014). 309 

Here for the first time, a consistent temporal response of the fish fauna to the OA-mediated habitat shift 310 

was documented. Overall, the number of species declined by 35% and 57% when comparing fish species 311 

richness at Control vs High CO2 sites in June and September, respectively (see Table S3). In addition, 312 

average species richness and abundance significantly decreased from Control to elevated CO2 conditions, 313 

with the lowest values recorded at the High and Mid CO2 sites (Fig. 5a; Table S3). Such a pattern was 314 

consistent in both June and September (Fig. 5a; Table S3) and confirms previous evidence that shifts 315 

toward less complex habitat causes decreased fish diversity and abundance (e.g. Wilson et al. 2008b), as 316 

well as simplified and homogenised fish communities under OA conditions (Nagelkerken et al. 2017). 317 

Trait-based approaches are increasingly being used to characterise ecological changes in disturbed 318 

ecosystems (Mouillot et al. 2013). Environmental alterations may not only lead to biodiversity loss, but 319 

also to changes in community function, through the selection of species with traits well-adapted to the 320 
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new environmental conditions. Since functional groups may show specific habitat requirements and 321 

preferences, the occurrence and abundance of certain species can be strongly influenced by habitat 322 

composition and characteristics. As expected, trait-based comparisons of fish communities along the CO2 323 

gradient reveal a change in composition towards fish species of less tropical and sub-tropical origin (Fig. 324 

5b), which is very likely related to the observed loss of scleractinian corals at >400 ppm CO2 and to the 325 

disappearance of the more specialised associated fish fauna they support. Therefore, the observed 326 

transitions from corals/high-profile algae to low-profile/turf algae support the available models 327 

suggesting that OA will hold temperature-induced poleward expansion of coral habitats (Yara et al. 328 

2012), and this will cascade on the composition of the associated fish fauna with a decreasing pool of 329 

tropical, sub-tropical and coral reef associated species under elevated CO2 conditions. In this regard, 330 

Nakamura et al. (2013) documented an increase of warm-water tropical fish along the Japan high-latitude 331 

waters. Our findings rather suggest that if ongoing OA will act as a supplementary game-changer in the 332 

near future, this could not be the case. 333 

When looking at fish trophic guilds we found that, relative to ambient CO2 conditions, the abundance of 334 

herbivorous fish was significantly higher at the High CO2 site in June, but not in September when 335 

seasonal typhoons caused the removal of macroalgal and turf cover particularly from the high CO2 area 336 

(Fig. 5c). Conversely, omnivorous species showed the opposite pattern being more abundant after the 337 

typhoon season. These results support previous evidence showing that an increased abundance of 338 

herbivore species at elevated CO2 conditions can be driven by the greater biomass of primary producers 339 

associated with enhanced nutritional quality (Vizzini et al. 2017). When turf and algae are removed by 340 

wave action, the availability and type of food changes, with repercussions on trophic guild composition 341 

(i.e. less herbivorous and more omnivorous species). In addition to this, results from recent experiments 342 

suggest that by increasing their macrophyte consumption and defecation rates, herbivore population 343 

growth could further modify trophic processes in benthic systems under OA conditions, hence amplifying 344 
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detritus biomass production and potentially altering energy pathways and ecosystem functioning (Zarco-345 

Perello et al. 2019). 346 

By contrast, a consistent decrease in the abundance of carnivore species was observed along the CO2 347 

gradient in both the sampling seasons (Fig. 5c). Such switches in the composition of functional groups 348 

(i.e. increase of herbivore and reduction in carnivores) appears to be a common community property in 349 

elevated CO2 systems and has been described by other ecosystem studies carried out in temperate natural 350 

CO2 vent systems (Vizzini et al. 2017; Nagelkerken et al. 2015; Milazzo et al., 2019). In this regard, we 351 

speculate that piscivorous species may be attracted to more complex habitat characterised by higher prey 352 

abundance, while herbivores may prefer less complex areas where primary production is higher and this 353 

resource can be accessed more easily. We also found a consistent decline in the abundance of 354 

planktivorous fish and in the number of coral reef associated species from ambient to elevated CO2 355 

conditions (Fig. 5c and 5d). Again, this seems to be related to the loss of coral species at the more elevated 356 

CO2 sites, which provide structural complexity and represent the preferred habitat for many coral fish 357 

species and their prey (Coker et al. 2014; Smith et al. 2016). Our findings add to previous evidence from 358 

ocean warming studies showing fish diversity declines following extensive coral loss due to bleaching 359 

events (e.g. Pratchett et al. 2011). In this regard, we suggest that OA may act as an additional bottleneck 360 

for fish community resilience under predicted ocean change scenarios. 361 

Natural analogues have many benefits for furthering knowledge about the responses of fish to OA 362 

conditions, but they are not perfect analogues for acidifying oceans. The seep areas are localised and so 363 

fish can move in and out, complicating dose-response assessments (Hurlbert 1984; Munday et al. 2014; 364 

Cornwall and Hurd 2015). Moreover, carbonate chemistry can be highly variable at CO2 seeps (Cattano 365 

et al. 2016; Cattano et al. 2017; Agostini et al., 2018) and toxic areas around volcanic vents need to be 366 

avoided in studies of the effects of ocean acidification (Vizzini et al. 2013). Nonetheless, the seeps allow 367 

studies of the ecosystem effects of OA and over time, using multiple CO2 seep locations, a pattern is 368 
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beginning to emerge about the effects of OA on fish communities. An additional caveat with volcanic 369 

CO2 seeps is that ocean acidification is occurring concurrently with warming, thus preventing their use 370 

as analogues for future oceans (Rastrick et al. 2018). This issue can be addressed by assessing ecosystem 371 

responses at CO2 seep in different biogeographic regions, or by manipulating temperature along CO2 372 

gradients (Alessi et al. 2019), or by exploiting marine heat waves to assess the combined stress of rising 373 

temperature and elevated CO2 (Rodolfo-Metalpa et al. 2011). In this context, recent evidence combining 374 

laboratory, mesocosm and meta-analyses of CO2 seep research suggests that OA affects the outcome of 375 

ocean warming (Goldenberg et al 2018). 376 

In summary, our data provide direct evidence that shifts in biogenic habitat and complexity reduction 377 

underpin a major loss (35-57%) of marine fish diversity as levels of carbon dioxide in seawater increase 378 

in coastal waters off Japan. Ocean acidification is expected to limit the poleward range expansion of 379 

coral reef-associated fish that is now occurring due to warming in Japan (Yamano et al. 2011; Agostini 380 

et al 2018; Kumagai et al. 2018) and elsewhere (Baird et al. 2012; Serrano et al. 2013; Denis et al. 2015; 381 

Tuckett et al. 2017). By enhancing the competitive strength of algae at the expense of structurally 382 

complex calcifying organisms, such as corals, our surveys indicate that ocean acidification will change 383 

fish community function with a greater abundance of herbivorous fish species but fewer carnivores and 384 

planktivores. Such changes in fish communities would cause major changes in trophic processes and 385 

energy pathways, as well as affecting fisheries. We conclude that the indirect effects of rising CO2 levels 386 

on coastal ecosystems will have a profound impact on reef fish communities.  387 
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 614 

Figure 1 – Map of the study showing Shikine Island, the two CO2 locations (Elevated and Control) and 615 
the five CO2 sites (High, Mid, Low, Ref1 and Ref2) where the benthic and fish 25m-transects were 616 

positioned.  617 
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 619 

Figure 2 – Non-metric multidimensional scaling (nMDS) on benthic habitats at the five CO2 sampling 620 
sites (High, Mid, Low, Ref1 and Ref2) in June (filled symbols) and September (empty symbols). 621 
Photomosaics of benthic community shifts observed in June and September along the CO2 gradient are 622 

also reported. The figure shows a clear community shifts in both seasons from zooxanthellate 623 
scleractinian corals and canopy-forming macroalgae at Control CO2 location (Ref1 and Ref2) to 624 
macroalgae at the Low and Mid CO2 sites and turf algae at the High CO2 site. 625 
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 627 

Figure 3 – dbRDA ordination of fish community data from five sampling sites (High, Mid, Low, Ref1 and 628 
Ref2) constrained by five environmental variables (CCA, Massive corals, table corals, Turf and non 629 

canopy algae) identified by DISTLM as significant in explaining 84,3% of fitted and 22% of total 630 
variation. Vectors represent strength of variables in the model. Their length in relation to the circle 631 
radius (radius = 1.0) and their direction indicate the strength and the sign, respectively, of the 632 
relationship between the variable and the axes. Filled and empty symbols represent data from June and 633 

September, respectively. 634 
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 636 

Figure 4 –AMM (Additive Mixed Model) showing the relationship between pCO2 values and habitat 637 

complexity (BHP). a) Fitted values (±95% confidence intervals) of pCO2 values and habitat complexity 638 
(log-transformed BHP index) for June (black dots) and September (green dots); b) model residuals 639 
(black dots) and estimated smoothing curve (solid line with ±95% confidence interval) showing the pCO2 640 

effects on BHP. The effect is significant (i.e. positive or negative) when the CI (grey area) does not 641 
overlap the zero (dashed line); c) partial effect (solid lines) of the factor Season on the BHP index 642 

(dashed lines indicate the ±95% confidence interval for September). The vertical lines reported on the 643 
x-axis of panels b and c represent the observations from the different pCO2 values and from the two 644 
seasons, respectively.  645 
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 647 

Figure 5 - Meta-analysis-derived approach to assess overall and trait-based changes of fish community 648 

at the different elevated CO2 sites, both in June and September. Each point represents the log response 649 
ratio (LnRR) of the average value for the different fish community variables recorded at Low, Mid and 650 
High CO2 sites relative to the ambient CO2 condition (i.e. Control location: Ref1 and Ref2 together), 651 
indicating the sign and the strength of change. a) Number and abundance of fish species (all the censused 652 
species); b) Sorigin: number of species by their geographic distribution (Tropical, Sub-tropical or 653 

Temperate); c) Ntrophic: abundance of species by their trophic guild (Omnivore, Planktivore, Carnivore 654 

or Herbivore); d) Scoral: number of coral-reef associated fish species. Squares indicate significant effects 655 

per p<0.05. Small circles indicate no significant differences. 656 
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