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virus each year across West Africa, with Nigeria accounting for more than half of these

human infections.

Author summary

The 2019 emergence of SARS-CoV-2 is a grim reminder of the threat animal-borne path-
ogens pose to human health. Even prior to SARS-CoV-2, the spillover of pathogens from
animal reservoirs was a persistent problem, with pathogens such as Ebola, Nipah, and
Lassa regularly but unpredictably causing outbreaks. Machine-learning models that antic-
ipate when and where pathogen transmission from animals to humans is likely to occur
would help guide surveillance efforts and preemptive countermeasures like information
campaigns or vaccination programs. We develop a novel machine learning framework
that uses datasets describing the distribution of a virus within its host and the range of its
animal host, along with data on spatial patterns of human immunity, to infer rates of ani-
mal-to-human transmission across a region. By training the model on data from the ani-
mal host alone, our framework allows rigorous validation of spillover predictions using
human data. We apply our framework to Lassa fever, a viral disease of West Africa that is
spread to humans by rodents, and use the predictions to update estimates of Lassa virus
infections in humans. Our results suggest that Nigeria is most at risk for the emergence of
Lassa virus, and should be prioritized for outbreak-surveillance.

Introduction
Emerging infectious diseases (EIDs) pose a persistent threat to public health. Approximately
60% of EIDs are caused by pathogens that normally circulate in wild or domestic animal reser-
voirs (i.e., zoonotic pathogens) [1]. Prior to full scale emergence, interaction between humans
and wildlife creates opportunities for the occasional transfer, or spillover, of the zoonotic path-
ogen into human populations [2]. These initial spillover infections, in turn, represent newly
established pathogen populations in human hosts that are subject to evolutionary pressures
and may potentially lead to increased transmission among humans [2, 3]. Consequently, a key
step in preempting the threat of EIDs is careful monitoring of when and where spillover into
the human population occurs. However, because the majority of EIDs from wildlife originate
in low and middle income regions with limited disease surveillance, accurately estimating the
rate and geographical range of pathogen spillover, and therefore the risk of new EIDs, is a
major challenge [1].

Machine learning techniques have shown promise at predicting the geographical range of
spillover risk for several zoonotic diseases including Lassa fever [4–6], Ebola [7, 8], and Leish-
maniases [9]. Generally, these models are trained to associate environmental features with the
presence or absence of case reports in humans or the associated reservoir. Once inferred from
the training process, the learned relationships between disease presence and the environment
can be extended across a region of interest. Using these techniques, previous studies of Lassa
fever (LF) have derived risk maps that assess the likelihood of human LF cases being present in
different regions of West Africa [4, 5]. However, because these forecasts combine case-reports
from both rodents and humans in the training process, they conflate attributes of the human
and reservoir populations that increase spillover risk. Consequently, these approaches shed
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little light on aspects of reservoir or human populations that determine the magnitude of spill-
over at a location and thus miss opportunities to identify effective interventions.

We develop a multi-layer machine learning framework that accounts for the differences
between how data involving a wildlife reservoir, and data from human serosurveys, can simul-
taneously inform spillover risk in people and rigorously assess whether predicted risk quanti-
fies the rate of new infections in humans. Our approach uses machine learning algorithms
that, when trained on data from the wildlife reservoir alone, estimate the likelihood that the
reservoir and the zoonotic pathogen are present in an area. These predictions are then com-
bined into a composite estimate of spillover risk to humans. Next, our framework uses esti-
mates of human pathogen seroprevalence, as well as estimates of human population density, to
translate the composite risk estimate into a prediction of the realized rate of zoonotic spillover
into humans. Omitting human seroprevalence data from the training process of the risk-layer
has several advantages. First, in the case of LF, due to modern transportation and the longevity
of Lassa virus antibodies in humans, a general concern is that the reported location of individ-
ual cases of human disease or Lassa virus antibody detection is not the site at which the infec-
tion occurred [10–12]. If the dispersal ability of the reservoir is small, training the risk layer on
reservoir infections alone helps the model avoid these biases when learning the spatial varia-
tion of spillover risk. Secondly, in our framework, human seroprevalence estimates provide
an ultimate test of the risk layer’s ability to correlate with spatial variation in the cumulative
human exposure to the pathogen. The seroprevalence data, in turn, stem from population-
based surveys at a site and are therefore much less likely to be influenced by the movement of
individuals.

We apply our framework to Lassa virus (formally ����� ����������	�
� [LASV]), a bi-
segmented, single-stranded ambisense RNA virus in the ������	�	��� family and the causative
agent of LF in West Africa [11, 13]. Though LASV can transmit directly between humans and
often does so in hospital settings [14], rodent-to-human transmission accounts for the major-
ity of new LASV infections [11, 15]. Specifically, the multimammate rat������� ��������	� is
believed to be responsible for most of the transmission into the human population, either
through consumption of food contaminated by rodent feces and urine or through hunting and
consumption of the rodent reservoir itself [16]. What remains largely unknown, however, is
the extent to which spatial patterns of spillover are driven by spatial variation in the abundance
of� ��������	� and viral prevalence within� ��������	� relative to spatial variation in other
contributing factors such as human behavior, housing materials, or other rodent reservoirs.
An additional unknown is the true magnitude of spillover into the human population outside
of the few areas in Sierra Leone and Nigeria where hospitals with Lassa diagnostic capacity
exist. As a consequence, most estimates for the magnitude of Lassa virus spillover rely on
longitudinal serosurveys conducted in the 1980s in Sierra Leone [17], yielding estimates of
between 100,000 and 300,000 LASV infections each year across West Africa. Here, we use our
framework to fill these important gaps in our current understanding of Lassa virus spillover
within West Africa.

Data and study region
We used online data repositories and literature sources to collect three types of data in West
Africa spanning the time-range 1970—2017: 1) capture-locations of� ��������	�, as well as
occurrence locations of non-Mastomys murids; 2) locations and outcomes of LASV surveys
conducted in� ��������	�; and 3) locations and measured seroprevalence of human LASV
serosurveys. The focal region from which our data originate, shown in Fig 1, was chosen as the
intersection of West Africa and the International Union for Conservation of Nature (IUCN)
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range map for������� ��������	� [18, 19]. Though� ��������	� is widely distributed across
all of Africa, the species consists of multiple clades that likely differ in their ability to serve as
hosts to LASV [20, 21]. By limiting the spatial extent of the study region to West Africa we
focus on the region occupied by the A-I clade of� ��������	� that is believed to transmit
LASV [22]. Our� ��������	� capture data, as well as all of the LASV survey data, originate
from within this region, thus providing a discrete bound on the area of Africa in which the
learned relationships of the model apply. For these analyses, this study region was divided into
0.05˚x0.05˚ pixels (approximately 5 km by 5 km at the equator).

The first two datasets generate response variables for the model layers that predict LASV
risk. The human seroprevalence data are used to evaluate the combined LASV risk layer for its
ability to predict LASV spillover in humans and are also used to calibrate the stage of the
model that predicts human LASV spillover. Our full dataset and the script files used to fit the
models are available in a github repository [23].

�������� ����	
���� presence data and background
We collected data on historical captures of� ��������	� from various sources. First, several
sources were used to identify all countries of West Africa that contain� ��������	� [24–26].
Next, rodent and mammal databases, as well as literature sources, were cross-referenced to fill
in details regarding the year of capture, latitude/longitude coordinates, and the method of
identification for each location at which� ��������	� was documented [17, 20, 27–42].
Because� ��������	� is morphologically similar to other rodents in the study region (e.g.,
������� ���������
�
�), we only include those presences that have been confirmed with
genetic methods or skull morphology. We found 167 locations with confirmed� ��������	�
captures. All� ��������	� captures occurred in the time-range 1977—2017.

Fig 1. Map of the study region. The dashed blue line indicates the study region from which rodent and human data originate. Dots indicate locations
at which Lassa virus or arenavirus antibodies have been sampled in rodents or humans. Each rodent point shows the outcome of a serological or PCR
test. Each human population point shows the location of a serosurvey.

https://doi.org/10.1371/journal.pcbi.1008811.g001
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Fitting the model requires supplementing the presence-only data with background points,
also called pseudo-absences [43, 44]. Background points serve as an estimate of the distribu-
tion of sampling effort for the organism being modeled [45]. We used background points cho-
sen from locations where rodents in the family Muridae had been captured in West Africa
from the Global Biodiversity Information Facility (GBIF) website [46]. We filtered the original
dataset to reduce the likelihood of including� ��������	� rodents that were misidentified as
� ���������
�
� and vice versa. Namely, we omit from the collection all Murid occurrences
that are within the genus�������. In addition, to ensure that the GBIF captures are concur-
rent with captures of� ��������	�, we only retained captures that occurred in the time-frame
of the� ��������	� captures. Finally, we only included records that are within the study region
depicted in Fig 1 and that fall outside of any pixel that contains a documented� ��������	�.
The resulting GBIF dataset spans the years 1977—2015.

These data were used to categorize the subset of the pixels that contained one or more cap-
tures into two exclusive categories: those in which at least one� ��������	� had been captured
(termed presences), and those with only non-Mastomys rodent occurrences (termed pseudo-
absences). In total, our dataset classified 155 unique pixels as capture-positive for� ��������
�	�, and 252 pixels as background (Table 1).

Surveys of �������� ����	
���� for Lassa virus
We compiled a dataset that contains occurrences of LASV in rodents or humans. The dataset
was established by an extensive review of LASV literature. Primary sources were found by
PubMed and GenBank searches of the terms “Lassa”, “Lassa fever”, “Lassa virus”, “Lassa arena-
virus”, and “Lassa mammarenavirus” [47]. Data from these primary sources was organized
into an Excel workbook.

From the full LASV dataset, we collected published studies that sampled� ��������	�
rodents for indicators of LASV. For each study, we found the sampling location for each tested
rodent (either latitude/longitude or a locality name for which coordinates could be obtained).

Table 1. Summary of rodent captures used in the reservoir layer.

Country Year # Pseudoabsences # Presences

Benin 2001-2017 12 7
Burkina Faso 1977-2008 3 15

Ghana 1999-2011 13 9
Guinea 1996-2012 71 12

Guinea-Bissau 2013 1 0
Ivory Coast 1978-2010 21 8

Liberia 1980-2013 18 0
Mali 1979-2012 58 47
Niger 1977-2007 16 14

Nigeria 1977-2015 7 13
Senegal 1990-2005 0 13

Sierra Leone 1977-2014 31 17
Togo 1982 1 0

Aggregate 1977-2017 252 155

# Pseudoabsences shows the number of unique 0.05 � 0.05˚ pixels in the GBIF dataset for which only non-Mastomys rodents were captured. # Presences indicates the
number of pixels in which one or more� ��������	� was captured.

https://doi.org/10.1371/journal.pcbi.1008811.t001
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In total, we compiled thirteen rodent studies [17, 30, 34, 36, 39, 41, 42, 48–53] that tested�
��������	� for LASV and contained latitude/longitude coordinates. The resulting test locations
originate from six countries and span the years 1972–2014.

Because the prevalence of LASV in rodents varies seasonally [54], and because of the spar-
sity of time-series data that might otherwise allow the average LASV prevalence in rodents to
be estimated, we used the collected data to broadly classify pixels into the categories “Lassa
positive” or “Lassa negative”. Specifically, a pixel was defined as Lassa positive if, at some
point, a� ��������	� rodent was captured within the pixel, and the rodent tested positive for
LASV using a RT-PCR assay or viral isolation. Because arenavirus antibodies cross-react, a
positive LASV antibody test in an individual rodent only indicates past infection with an are-
navirus, and not necessarily LASV. In an effort to reduce the frequency of false positives in the
training data, pixels that only contain LASV seropositive tests of rodents, and no positive
LASV viral detection, were not used as training data. These criteria led to the omission of eight
pixels from the training data. Fitting the model with these eight pixels included as presences is
an option in the code on the github repository, but does not substantially affect the overall fit
of the model [23].

Although serosurveys of rodents cannot specifically show that LASV is present, they can
indicate the absence of LASV (along with all other arenaviruses). Pixels were classified as Lassa
negative if five or more� �������	� rodents in total were tested for infection with LASV by
RT-PCR, or tested for any previous arenavirus exposure using a serological assay, and all
rodents tested were negative. We chose a threshold of five to help reduce the chance of includ-
ing false negatives (i.e. sites that have LASV but in which only non-exposed rodents were cap-
tured). This procedure allowed us to classify 62 unique pixels in total: 27 were classified as
Lassa negative, and 35 were classified as Lassa positive (Table 2 and Fig 1).

Human seroprevalence data
From our full LASV dataset described in the previous section, we collected literature sources
that describe the prevalence of arenavirus antibodies in human populations of West Africa. As
with the rodent LASV infection data, arenavirus antibodies are not specific to LASV. However,
because human serosurveys were often conducted in LASV endemic areas or near docu-
mented locations of LASV-infected rodents, these serosurveys likely measured the fraction of
humans with previous LASV infection, rather than exposure to another arenavirus. We
required that each literature source include information on the diagnostic method that was
used to test individuals (e.g., ELISA, IFA) and broad details of the survey design. We only

Table 2. Summary of LASV positive and LASV negative pixels used in the pathogen layer.

Country Year # Pixels # Neg. Pixels # Pos. Pixels

Ghana 2010-2011 7 7 0
Guinea 2003-2014 19 6 13

Ivory Coast 2003-2013 4 3 1
Mali 2004-2012 11 7 4

Nigeria 1972-2012 6 3 3
Sierra Leone 1972-2009 15 1 14
Aggregate 1972-2014 62 27 35

Each row aggregates literature and GenBank data sources over a country. # Pos. Pixels indicates the number of
unique pixels that had one or more LASV-infected rodents. # Neg. Pixels is the number of pixels in which five or
more rodents were tested and found negative for LASV infection or antibody.

https://doi.org/10.1371/journal.pcbi.1008811.t002
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included survey studies that were designed to estimate the seroprevalence in the local commu-
nity population. This criterion excluded surveys of hospitals, for example, as well as surveys of
missionaries.

Each datum contains latitude and longitude of the serosurvey, the number of individuals
tested, and the number of individuals determined to have arenavirus antibodies. In total, we col-
lected 94 serosurveys from seven studies (Fig 1) [17, 55–60]. These serosurveys were conducted
between 1970 and 2015 and are located in five countries in West Africa (Table 3 and Fig 1).

Predictors
We include predictors that are broadly hypothesized to influence the distributions of� �����
����	� and LASV.� ��������	� is widely distributed across sub-Saharan Africa in savanna and
shrubland environments. Within such environments,� ��������	� is commonly associated
with small rural communities and is considered a serious agricultural pest [19, 54]. To allow
the model the possibility to learn these relationships, we include predictors that describe
MODIS land cover features as predictors, and also include human population density within
each pixel. We also include elevation in meters. Because climate seasonality and crop matura-
tion affect the breeding season of� ��������	�, we include various measures of the seasonality
of the vegetative index (NDVI), precipitation, and temperature [61]. See S1 Appendix for a
complete list of environmental variables. LASV is often associated with� ��������	�, so we
use the same set of predictors for the pathogen layer.

Methods
We developed a model that predicts the rate of LASV infection in humans within individual
0.05˚x0.05˚ pixels across West Africa. An overview of the model framework is depicted in
Fig 2. Outputs from the model are generated in two stages. The first stage uses environmental
features to estimate different layers of LASV spillover risk. The layers of risk, in turn, are
described by: 1)�, a classification score indicating the likelihood that a pixel contains the pri-
mary rodent reservoir,� ��������	�, and 2) ��, a score indicating the likelihood that LASV
circulates within the� ��������	� population, conditioned on the rodent being present.
Depending on the layer, the response variable for this stage is generated from documented
occurrences of� ��������	� (� layer), or evidence of past LASV infection in� ��������	�
(�� layer). These layers are used to define a composite layer of spillover risk ��, the product of
� and ��, that describes the likelihood that a pixel simultaneously contains� ��������	�

Table 3. Summary of human arenavirus serosurveys used in the model.

Country Year # Sites Method # Tested % Seropositive Reference

Ghana 2010-2011 10 ELISA 657 5 [57]
Guinea 2000 30 IFA 977 11 [55]
Guinea 1990-1993 28 ELISA 3276 23 [56]
Liberia 1980-1982 7 IFA 1848 5 [59]

Mali 2015 3 ELISA 600 33 [58]
Sierra Leone 1977-1983 14 IFA 5098 23 [17]
Sierra Leone 1970-1972 2 CF 255 6 [60]
Aggregate 1970-2015 94 12,711 19

Each row is an individual literature source. For each study, # Sites shows the number of locations at which arenavirus surveys were performed, # Tested indicates the
total number of individuals tested across sites, and % Seropositive shows the percentage of individuals that tested positive across all sites.

https://doi.org/10.1371/journal.pcbi.1008811.t003
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and LASV. The second stage of our framework uses a generalized linear model to regress the
estimates of human arenavirus seroprevalence onto the �� layer. Lastly, we used an epidemio-
logical model to estimate human incidence from the predictions of seroprevalence.

LASV risk layers
Each risk layer of the first stage is generated by a separate boosted classification tree (BCT).
The BCT, in turn, uses environmental features within a pixel to infer a classification score,

Fig 2. Overview of the model. Ellipses represent datasets, circles represent models, and rectangles represent model predictions.

https://doi.org/10.1371/journal.pcbi.1008811.g002

PLOS COMPUTATIONAL BIOLOGY Using reservoir ecology and human serosurveys to estimate Lassa virus spillover

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008811 March 3, 2021 8 / 24

https://doi.org/10.1371/journal.pcbi.1008811.g002
https://doi.org/10.1371/journal.pcbi.1008811


https://doi.org/10.1371/journal.pcbi.1008811


https://doi.org/10.1371/journal.pcbi.1008811


https://doi.org/10.1371/journal.pcbi.1008811


https://doi.org/10.1371/journal.pcbi.1008811


(coefficient: 1.50, p = 0.000123, Fig 4). The model also indicated the presence of substantial
overdispersion in the human seroprevalence dataset (� = 15.1). More information on the
GLM output can be found in the S1 Appendix. By applying the general linear model to the
combined LASV risk layer, we extrapolate the human LASV seroprevalence across West Africa
(Fig 5). Our results indicate that human LASV seroprevalence is greatest in the eastern and
western regions of West Africa, with especially high seroprevalence in Central Guinea, Sierra
Leone, and Nigeria.

Furthermore, by assuming that our predictions are representative of LASV infection at
steady state, we can derive the number of LASV infections per year in humans. If the �� layer
accurately describes the spatial heterogeneity of LASV seroprevalence in humans, and if LASV
antibody production upon recovery is lifelong, our framework estimates that 897,700 new
human infections occur each year. Between 664,300–843,800 (i.e., 74–94%) of these infections
are expected to be sub-clinical or asymptomatic, leaving 53,900–233,400 infections that might
require hospitalization [17]. Given that 2% of all infections result in fatality, our estimates
imply that 18,000 individuals die of Lassa Fever in West Africa each year. Though our
model does not account for differences of LASV risk by sex or age, research suggests that

Fig 3. Calculating the combined risk layer. (A) Map shows the likelihood that each 0.05˚ pixel in West Africa contains the primary reservoir of Lassa
virus,� ��������	�. Pink dots indicate locations of captures that were used to train the model. Black line indicates the IUCN� ��������	� range map.
(B) Predicted distribution of Lassa virus in� ��������	�. Dots indicate locations in which� ��������	� were surveyed for the virus. (C) Combined risk,
defined as the product of the above two layers.

https://doi.org/10.1371/journal.pcbi.1008811.g003

PLOS COMPUTATIONAL BIOLOGY Using reservoir ecology and human serosurveys to estimate Lassa virus spillover

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008811 March 3, 2021 13 / 24



hospitalizations may be skewed towards females, and fatalities will be biased towards individu-
als under 29 years of age but not skewed by gender [69].

Table 4 shows the number of LASV infections per year by country, ordered by number of
infections. Our predictions indicate that more than half of new human LASV infections
(531,700) in West Africa will occur in Nigeria (Fig 6). This distribution of LASV infection is
largely due to the greater population size within Nigeria, as the per person spillover rates do
not differ dramatically between countries (Table 4). After Nigeria, Ghana (60,200 infections
per year) and the Ivory Coast (57,700 infections per year), respectively, are predicted to have
the highest incidence of human LASV infections. Sierra Leone, Nigeria, and Guinea are pre-
dicted to have the highest per-capita rates of LASV infection (Table 4).

The above estimates are based on the premise that, upon recovery from LASV infection, an
individual produces antibodies for the remainder of their life. If, instead, LASV antibody pro-
duction ceases after an average of 15.6 years as suggested by some longitudinal serosurveys
[17], then a given level of seroprevalence implies almost five times as many infections com-
pared to the scenario with lifelong antibody production. Specifically, allowing for seroreversion

Fig 4. Human arenavirus seroprevalence vs the combined risk layer. Each circle represents a different serosurvey.
The size of the circle indicates the number of humans that were tested. Solid black line shows the quasi-binomial
prediction of seroprevalence, and the red dashed lines show the 95% confidence intervals. Confidence intervals were
obtained by fitting the model 1000 times on random samples taken from the dataset with replacement.

https://doi.org/10.1371/journal.pcbi.1008811.g004
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and subsequent LASV reinfection in the model implies 4,383,600 infections occur each year.
Inclusion of reinfection does not change the ranking of countries in Table 4.

Discussion
Machine learning approaches that forecast the spatial risk of emerging infectious diseases such
as Lassa virus are often not designed to explain how aspects of the environment translate into

Fig 5. Predicted human seroprevalence of Lassa virus in West Africa. Dots show locations of human serosurveys, and dot color indicates
the residual of the predicted seroprevalence. White dots indicate locations for which measured seroprevalence fell within 0.1 of the prediction.
Measured seroprevalence at red dots was 0.1 or more greater than that predicted, and seroprevalence at blue dots was 0.1 or more below the
prediction.

https://doi.org/10.1371/journal.pcbi.1008811.g005

Table 4. Predicted annual number of Lassa virus infections and infection rate.

Country 1000’s of infections Rate
Nigeria 531.7 2.6
Ghana 60.2 2.0

Ivory Coast 57.7 2.3
Niger 46.9 2.0

Burkina Faso 44.4 2.1
Mali 44.3 2.2

Guinea 35.0 2.5
Benin 27.0 2.2

Sierra Leone 20.7 2.9
Togo 17.9 2.2

Liberia 9.9 2.0
Mauritania 1.0 1.9

Senegal 0.8 2.0

Infection rate is in units of number of infections per year per 1000 people. Estimates in the table are derived
assuming seroreversion and reinfection do not occur.

https://doi.org/10.1371/journal.pcbi.1008811.t004
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realized pathogen spillover into human populations [4, 5]. Models that specifically predict
attributes of the reservoir from the environment, and use these predictions to quantify spill-
over into humans, offer a more mechanistic understanding of the current and future spatial
variation in human disease [70]. Our forecasting framework advances these approaches by
generating predictions of spillover risk based only on data from the primary rodent reservoir
of LASV, and rigorously assessing our risk predictions on realized human spillover as mea-
sured by human arenavirus serosurveys. As indicated by a generalized linear regression, our
reservoir-based model of spillover risk explains a modest and statistically significant amount
of the spatial variation in human arenavirus seroprevalence.

Using this framework, we are able to generate predictions of the number of new LASV
infections within different regions of West Africa. Our results indicate that Nigeria contributes
the greatest number of new human infections each year, and that the magnitude of new infec-
tions in Nigeria is driven primarily by its greater human population density, rather than an
increased per-capita risk. An assumption that drives this result is the density-dependent form
of spillover in the model (i.e., ��), in which rodent-human interactions increase with human
population density. This form is appropriate if rodent interactions are well-mixed in the
human population. For example, if increases in human density were reflected in an increased
number of humans per dwelling, then the LASV risk posed by single rodent in a household
would increase with human population size. If these assumptions are correct, Nigeria is likely
to represent the greatest risk of LASV emergence because the large number of annual spillover
events allows for extensive sampling of viral strain diversity and repeated opportunities for
viral adaptation to the human population [71].

Our approach allows us to highlight the regions that contribute most to pathogen spillover,
and suggest locations for further surveillance. Our model indicates that the highest per-capita
risk to humans occurs in Sierra Leone, Guinea, and Nigeria. Given the data that are currently

Fig 6. Predicted spatial density of Lassa virus infections in humans. Map shows the predicted infections per km2. Yellow colors,
representing a high number of infections, tend to occur in areas with high human population density and a high predicted
seroprevalence.

https://doi.org/10.1371/journal.pcbi.1008811.g006
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available, our model suggests that these countries should be prioritized for surveillance of
LASV emergence in rodents and at-risk human populations. Human serosurveys of the gen-
eral population are notably lacking in Nigeria, but have the potential to clarify the true magni-
tude of LASV spillover in West Africa. Although it is known that certain broad regions of
West Africa have a long history of LASV spillover (e.g., Sierra Leone, Guinea, Nigeria), rela-
tively little is known about the prevalence of LASV in rodents or humans in other regions (e.g.,
Togo, Benin, Mali, Burkina Faso). Our model suggests that Lassa virus infections occur regu-
larly in these under-sampled areas. Human serosurveys and rodent LASV testing from these
regions could help modeling approaches clarify the spatial distribution of Lassa fever across
West Africa.

In addition to identifying the regions most at risk for viral emergence, our model frame-
work provides updated estimates for the rate of LASV spillover across West Africa. Previous
estimates of 100,000–300,000 infections per year were based on longitudinal studies from
communities in Sierra Leone conducted in the 1980s [17]. Using seroprevalence data from
studies across West Africa, our model predicts between 897,700–4,383,600 LASV infections
in humans occur each year. As demonstrated by past research focused on estimating LASV
infection in humans, where the true value lies within this range depends on whether or not
seroreversion and subsequent LASV reinfection are regular features of human LASV epide-
miology, and therefore reinforces the need to better understand the scope for LASV reinfec-
tion [72]. It is important to realize that our predictions include both symptomatic and
asymptomatic infections. Thus, because many human LASV infections result in mild flu-
like symptoms or are asymptomatic, it is unsurprising that our predicted values exceed the
reported number of confirmed LF cases in Nigeria [73, 74]. Several factors may contribute to
the discrepancy between previous estimates of LASV spillover, and our revised estimates.
McCormick et al. (1987) used seroconversion data from a 15 month period to infer a rate of
LASV infection across West Africa. However, the population of West Africa has increased by
a factor of 2.4 since that time, making these estimates outdated [75]. Furthermore, our esti-
mates are based on human seroprevalence data that comes from five countries in West Africa
and spans a 45 year time period. Because our dataset was obtained from a broader spatial
and temporal range, our estimates are less likely to be biased by sporadic extremes in LASV
spillover.

Accurate risk predictions could help guide risk-reduction and behavior-change communi-
cation campaigns, the distribution of future human LASV vaccines, and countermeasures
directed at the rodent reservoir. In addition to vaccines that prevent infection in humans, new
vaccine designs are currently being investigated for various wildlife pathogens as well, includ-
ing pathogens in rodents [76, 77]. Wildlife vaccination campaigns that use vaccine baits have
proven to be effective in the control of rabies in red fox ( 
�!�� �
�!��) over large land areas,
but require substantial planning and surveillance of the reservoir population [78]. Rodent pop-
ulation management could be another method of attenuating the risk of LASV in an area. Pin-
pointing areas that are most in need of spillover intervention will help overcome the logistical
challenges that are associated with vaccine distribution to humans or wildlife on large scales.
In addition to guiding intervention to specific regions, mechanistic forecasts similar to ours
could help plan the logistics of such operations.

Our framework sheds light on the connection between LASV spillover in humans and the
environmental conditions favorable to pathogen and reservoir. The reservoir layer of our
model identified strong seasonal trends in vegetation (NDVI) as the primary explanatory vari-
able that determines where the rodent� ��������	� occurs. This builds on other work that
identified properties of vegetation as important predictors of the range of� ��������	� [5]. In
conjunction with a strong seasonality of vegetation, our model identified a range of mean and
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maximum rainfall values that limit the distribution of the LASV reservoir. This is in line with
previous ecological studies showing that seasonal patterns of precipitation and vegetation are
important drivers of seasonal breeding in� ��������	� [79]. Our model indicates that�
��������	� do not occur in areas associated with too much rainfall or areas without a clear wet/
dry seasonality, resulting in a lower risk of LASV spillover in coastal areas of West Africa and
southern Nigeria. The pathogen layer of our model also indicates that strong seasonal precipi-
tation patterns are the leading environmental feature that is associated with LASV in� �����
����	� and the main driver of the LASV’s occurrence in only western and eastern West Africa.
Though the mechanism by which rainfall affects viral prevalence is unclear, it has been hypoth-
esized, for example, that wetter conditions might facilitate the virus’ ability to survive outside
the host [4].

Our model of spillover risk predicts a significant, but small amount of the spatial variation
in arenavirus seroprevalence studies in humans. The modest relationship between human
LASV spillover and predicted risk might be due to the binary classifiers’ coarse description of
the magnitude of LASV risk. As more longitudinal data become available, these binary models
can be upgraded with more nuanced models that predict the time-varying density of� �����
����	� and the prevalence of LASV among the rodent population. Alternatively, the low correla-
tion could indicate that other predictors like human factors have a large influence on LASV
spillover. Geographic differences in housing, cultural practices, and diet likely influence the
extent of LASV spillover but are not included in our model. For instance, the use of rodent-
proof housing materials (e.g., concrete vs mud) and abstaining from rodent hunting and con-
sumption are known to affect the extent to which LASV is able to transmit between rodents
and humans [16, 80]. The residuals of seroprevalence predictions from our model could help
guide understanding of which human factors mitigate or facilitate LASV spillover. If human
factors like housing type can be readily identified from serosurvey locations within West
Africa, they could be incorporated in the human stage of the model that connects spillover risk
to human seroprevalence.

Geographic variation in LASV and its primary reservoir may also be responsible for the
modest fit of our model. For instance, across West Africa LASV consists of several clades [22].
If certain clades are better at infecting humans, then our model will tend to underestimate the
rate of human infections in regions where such highly-infectious clades occur. Similarly, the
� ��������	� reservoir is also divided into multiple clades [20]. Different� ��������	� clades
may differ in their contact rates with humans or in their suitability as reservoir, further reduc-
ing our model’s ability to predict spillover into humans. Some evidence for this latter possibil-
ity comes from arenavirsues that preferentially infect certain clades of� ��������	� [21].
Because our study region only includes West Africa, it is likely that the� ��������	� occur-
rences that our model is trained on are only from the A-I clade [20]. However, our forecast
should be interpreted with caution in eastern Nigeria, where the transition zone into the A-II
clade occurs. Future work integrating these factors may help improve our understanding of
the spatial variation in human seroprevalence that is due to the spatial patterning of LASV and
reservoir clades.

Another factor that could influence our model fit is the possibility that rodent species other
than� ��������	� serve as reservoirs or interact with the primary reservoir in ways that
decrease or increase risk. Though� ��������	� is believed to be the primary reservoir that
contributes to human infection, several species of rodents are known to be capable of harbor-
ing the virus [48]. Understanding the relationship between the habitat suitability of different
rodent reservoirs and human LF burden may help determine whether� ��������	� is the host
at which intervention strategies should always be directed. Furthermore, other species of
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rodent may displace� ��������	� and therefore lower the overall spillover risk of LASV into
humans. The layered framework we have developed can be easily adapted to include additional
reservoir species and systematically investigate these possibilities.

Our model is constructed to learn and explain spatial variation in the average historical
spillover of LASV, and does not include temporal trends of spillover risk. Due to the sparsity
of available longitudinal data, our model assumes that the human population in West Africa,
human LASV seroprevalence, and the rate of LASV spillover, are all constant in time. Over
decades-long timescales, the rate of LASV spillover is likely increasing due to increasing rates
of human-rodent interaction that come with urban growth, deforestation, or climate change
[11, 70]. Estimating the combined temporal and spatial variation of infection will require long-
term longitudinal studies in both rodents and humans across West Africa. With this data, for
example, more advanced models could mechanistically associate an increasing rate of spillover
with changes to land cover.

Another important temporal simplification of our current modeling work is the absence of
seasonality in LASV spillover. In Sierra Leone, Guinea, and Nigeria, hospital admissions attrib-
utable to LASV infection generally peak late in the dry season [54, 69, 81]. In these regions, the
mechanism of seasonal spillover likely involves a combination of seasonal rainfall and land use
practices, such as crop-harvesting and subsequent burning of agricultural fields, that drive
rodents into domestic dwellings in search of food-stuffs [54, 82]. It is not understood whether
these factors operate uniformly across all of West Africa. Temporal fluctuations in the density
of the reservoir population, due to seasonal cycles of reproduction, are another potentially
important factor that could drive a seasonal spike of human LF cases. However, it is unclear
whether the density fluctuations that have been observed outside of the LASV geographic
range (e.g., Tanzania [79]) also occur within West Africa. At least in Guinea and Sierra Leone,
research on the population dynamics of� ��������	� indicates that density fluctuations are
much weaker than those in East Africa [83]. In the case of rodent vaccination, understanding
population dynamics is particularly important because distributing vaccines at seasonal popu-
lation lows in wildlife demographic cycles can, in theory, substantially increase the probability
of pathogen elimination [83, 84].

Although the methods we have used here make efficient use of available data, the accuracy
of our risk forecasts remains difficult to rigorously evaluate due to the limited availability of
current data from human populations across West Africa. The sparseness of modern human
data arises for two reasons: 1) the lack of robust surveillance and testing across much of the
region where LASV is endemic and 2) the absence of publicly available databases reporting
human cases in those countries that do have relatively robust surveillance in place (i.e., Nige-
ria). Improving surveillance for LASV across West Africa and developing publicly available
resources for sharing the resulting data would allow more robust risk predictions to be devel-
oped and facilitate risk reducing interventions. Despite these limitations of existing data, the
structured machine-learning models we develop here provide insight into what aspects of
environment, reservoir, and virus, contribute to spillover, and the potential risk of subsequent
emergence into the human population. By understanding these connections, we can design
and deploy more effective intervention and surveillance strategies that work in tandem to
reduce disease burden and enhance global health security.

Supporting information
S1 Appendix. Details on the predictors used in the model and model fits.
(PDF)
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viral: the importance of host phylogeographic structure in the spatial spread of arenaviruses. PLoS
Pathog. 2017; 13(1):e1006073. https://doi.org/10.1371/journal.ppat.1006073 PMID: 28076397

22. Olayemi A, Fichet-Calvet E. Systematics, Ecology, and Host Switching: Attributes Affecting Emergence
of the Lassa Virus in Rodents across Western Africa. Viruses. 2020; 12(3):312. https://doi.org/10.3390/
v12030312 PMID: 32183319

23. Basinski AJ. Pathogen Spillover Forecast; 2020. Github repository https://github.com/54481andrew/
pathogen-spillover-forecast.git.

24. Wilson DE, Reeder DM. Mammal species of the world: a taxonomic and geographic reference. vol. 1.
JHU Press; 2005.

25. Happold D, Happold D. Mammals of Africa. Volume III: Rodents, hares and rabbits. 2013;.

26. Granjon L, Duplantier JM, Catalan J, Britton-Davidian J. Systematics of the genus Mastomys (Thomas,
1915)(Rodentia: Muridae). A review. Belgian Journal of Zoology (Belgium). 1997;.

27. Van de Perre F, Adriaensen F, Terryn L, Pauwels O, Leirs H, Gilissen E, et al. African mammalia; 2019.
http://projects.biodiversity.be/africanmammalia.

28. Centre de Biologie pour la Gestion des Populations. Database on Sahelo-Sudanian rodents; 2017.
http://vminfotron-dev.mpl.ird.fr/bdrss/bdrsspub_form.php.
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