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ARTICLE

Orally delivered MK-4482 inhibits SARS-CoV-2
replication in the Syrian hamster model
Kyle Rosenke1, Frederick Hansen1, Benjamin Schwarz2, Friederike Feldmann3, Elaine Haddock1,

Rebecca Rosenke3, Kent Barbian4, Kimberly Meade-White1, Atsushi Okumura1, Shanna Leventhal1,

David W. Hawman1, Emily Ricotta 5, Catharine M. Bosio2, Craig Martens4, Greg Saturday3,

Heinz Feldmann 1✉ & Michael A. Jarvis 1,6,7✉

The COVID-19 pandemic progresses unabated in many regions of the world. An effective

antiviral against SARS-CoV-2 that could be administered orally for use following high-risk

exposure would be of substantial benefit in controlling the COVID-19 pandemic. Herein, we

show that MK-4482, an orally administered nucleoside analog, inhibits SARS-CoV-2 repli-

cation in the Syrian hamster model. The inhibitory effect of MK-4482 on SARS-CoV-2

replication is observed in animals when the drug is administered either beginning 12 h before

or 12 h following infection in a high-risk exposure model. These data support the potential

utility of MK-4482 to control SARS-CoV-2 infection in humans following high-risk exposure

as well as for treatment of COVID-19 patients.
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Severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) is the causative agent of coronavirus disease 2019
(COVID-19)1. Following the emergence of the virus in late

20192, COVID-19 was declared a pandemic by the World Health
Organization (WHO) on 11 March 20203. As of late December
2020, there are over 79 million con�rmed cases and more than
1.7 million deaths from COVID-19 worldwide3. Myriad differ-
ences in governmental public health responses, politicization of
the pandemic response and societal acceptance of control mea-
sures have resulted in differing levels of success in controlling the
initial wave of infection around the world4–7. Even in those
countries that have achieved a higher degree of control of the
initial pandemic wave, the unavoidable need to relax highly
stringent public health measures has resulted in a rebound of
SARS-CoV-2 infections, with a second wave already hitting many
countries in the Northern hemisphere8.

Currently, there are no drugs suitable for high-risk exposure
use against SARS-CoV-2. The nucleoside analog, GS-5734
(remdesivir), a non-obligate RNA chain terminator, has been
granted emergency use authorization (EUA) by the FDA for the
treatment of COVID-19 patients9. This EUA was based on the
demonstration of a decreased time to recovery in patients hos-
pitalized for severe COVID-19, and was recently expanded to
include all hospitalized adult and pediatric patients, irrespective
of disease severity9,10. In preclinical animal studies, which
are more amenable than clinical trials for assessment against
high-risk exposure, GS-5734 administered 12 h after SARS-CoV-
2 infection was shown to lower lung viral load and lung pathol-
ogy, although treatment had no effect on shedding from the
upper respiratory tract11. The use of GS-5734 for control of
disease in symptomatic COVID-19 patients remains a point of
contention12. Currently, GS-5734 can be administered only via
the intravenous route, which makes its application to the control
of high-risk exposure challenging.

MK-4482 (known previously as EIDD-2801) is an orally
administered bioavailable prodrug (5�-isobutyric ester form) of
the cytidine nucleoside analog EIDD-1931 (�-D-N4-hydro-
xycytidine; NHC)13. Using a high throughput screen of nucleo-
side analogs, EIDD-1931, the active compound resulting from
hydrolysis of MK-4482, was identi�ed as a broad activity inhi-
bitor of in�uenza A and respiratory syncytial viruses, with initial
functional assays showing the drug to function primarily as an
RNA mutagen rather than chain terminator14. Originally devel-
oped for the treatment of hepatitis C virus (HCV) in early the
2000s15, recent studies indicated potent activity of EIDD-1931
against SARS-CoV-2 in multiple cell types, including biologically
relevant epithelial cells in vitro, and against MERS-CoV-1 and
SARS-CoV-1 coronaviruses in mouse models when administered
shortly before as well as following infection16.

In this work, we determine the half-maximal inhibitory con-
centration (IC50) value for EIDD-1931 in tissue culture and
subsequently assess the potential of MK-4482 following oral
administration to control SARS-CoV-2 in the highly susceptible
Syrian hamster model17,18. We show that MK-4482, when
administered either starting at 12 h prior to SARS-CoV-2 infec-
tion, or even 12 h post-infection, signi�cantly decreases viral lung
loads and pathology, but does not affect shedding from the upper
respiratory tract. These �ndings support the potential of MK-
4482 as an orally administered drug for high-risk exposure and
possibly therapeutic use in humans.

Results
First, we determined the in vitro inhibitory effect of EIDD-1931
on SARS-CoV-2 replication in Calu-3 cells, a disease-relevant
human lung epithelial cell line. Cells were pretreated with

differing drug concentrations and the effect on viral RNA load in
tissue culture supernatant was determined at 24 h after infection
by quantitative reverse transcriptase polymerase chain reaction
(RT-PCR) (Fig. 1a). EIDD-1931 treatment resulted in a decrease
in SARS-CoV-2 replication by approximately 3-logs (880-fold)
when compared to no drug controls (Figs. 1a, b). The half-
maximal inhibitory concentration (IC50) value for EIDD-1931
was shown to be at sub-micromolar levels in Calu-3 cells at 414.6
nM (Fig. 1c). Viability was also assessed over the differing con-
centrations, demonstrating only minimal cellular toxicity at the
highest drug concentration (Fig. 1d).

Having veri�ed in vitro ef�cacy and determined the IC50 value
of EIDD-1931, we next assessed the ef�cacy of the MK-4482
prodrug in the Syrian hamster model, which is regarded as a
preclinical model of mild disease, with animals having self-
limiting pneumonia17,18. Given the possibility for oral dosing, we
were interested in the utility of MK-4482 as a treatment following
high-risk exposure. The Syrian hamster model used for these
studies is a recently established model that has further expanded
understanding of key infection parameters absent from initial
iterations of this preclinical model18. Two groups of hamsters
(n = 6 per group) were treated with MK-4482 (250 mg/kg) by
oral gavage 12 h and 2 h before (pre-infection treatment group) or
12 h post-infection (post-infection treatment group). This dosing
regimen was based on previous studies using MK-4482 in pre-
clinical rodent models of SARS-CoV-1 and MERS16. Animals
were then dosed every 12 h with MK-4482 (250 mg/kg). A control
group was treated using the same route and timing as the pre-
infection group with vehicle only (see schematic; Fig. 2a). Ham-
sters were infected intranasally with SARS-CoV-2 using a dose of
5 × 102 TCID50 (100 times infectious dose 50; ID50). The ID50
value was determined in a separate study concerned with further
re�nement of the Syrian hamster SARS-CoV-2 model18. Treat-
ment in all groups was continued for 3 consecutive days and
hamsters in all groups were euthanized on day 4 post-infection at
the peak of virus replication18.

Disease in Syrian hamsters following SARS-CoV-2 infection is
transient, peaking at or around 4 days post-infection with mini-
mal clinical signs17–20. Consistent with this observation, no
substantial clinical symptoms were observed in any group over
the course of the study, including an absence of any discernible
differences in weak weight loss (Supplementary Figure 1). Virus
shedding was measured with oral swabs collected on day 2 and 4
post-infection. Levels of viral RNA in the oral cavity decreased
from day 2 to 4, but were similar between all groups at these two
time points of analysis (approximately 108 and 107, for day 2 and
4 post-infection, respectively) (Fig. 2b). Although more variable,
infectious titers recovered from oral swabs were consistent with
the genome copy data in that similar levels of infectious virus
were detected in all groups at each time point (Fig. 2c). Lung
tissue samples were collected at the peak of virus replication and
disease, day 4 post-infection, for analysis. In contrast to levels of
shedding, a 1-log decrease in viral RNA was detected in the lungs
of pre-infection and post-infection groups, respectively, when
compared to the vehicle control group (Fig. 2d). This corre-
sponded to a 2-log decrease in infectious virus in the lungs of the
MK-4482 treated groups when compared to the vehicle controls
(Fig. 2e).

Lung samples were taken for histopathological analyses, and
results are shown in Fig. 3a–f. Analysis revealed pulmonary
lesions consisting of a moderate-marked broncho-interstitial
pneumonia centered on terminal bronchioles and extending into
the adjacent alveoli. Multifocal necrotic epithelial cells and
moderate numbers of in�ltrating neutrophils and macrophages
with abundant luminal cellular exudate in the bronchi and
bronchioles were also present. Alveolar septa were expanded by
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edema �uid and leukocytes. Moderate type II pneumocyte
hyperplasia was noted in more consolidated areas with abundant
alveolar macrophages, cellular exudate, and edema. Blood vessels
were surrounded by moderate numbers of lymphocytes that
multifocally aggregated in vascular tunics and elevated the over-
lying epithelium. Low numbers of syncytial cells were noted in
the bronchioles and alveoli. These described lesions affected
20–50% of pulmonary tissue in the vehicle control groups and
while the pre-infection and post-infection treatment groups had
similar lesions, they were noticeably less abundant compared to
the vehicle control. One animal in each of the pre- and post-
infection treatment groups had no lesions at all. Pneumonia in
the remaining animals affected roughly 5–15% of the lung tissue,
but lesions were minimal to mild.

Immunoreactivity against SARS-COV-2 antigen was used to
further compare the lung samples between the three different
treatment groups (Fig. 3g–i). Antigen staining was observed in
the bronchial and bronchiolar epithelium, type I and II pneu-
mocytes as well as a small number of pulmonary macrophages. A
positive pixel analysis on whole lung slides demonstrated a sig-
ni�cant difference in viral antigen present among the three
groups. The total number of positive pixels was divided by the
area of lung scanned to determine a percentage of lung containing
viral antigen. This analysis revealed that the vehicle controls
contained signi�cantly more antigen than the treated groups, with
the vehicle controls having on average 4.71 times more antigen
signal than pre-infection treatment animals and 3.68 times more
signal than post-infection treatment animals. Post-infection
treatment animals exhibited a slightly higher antigen signal

than pre-infection treatment animals, but the difference was not
signi�cant (Fig. 4a).

To evaluate the pharmacokinetics of MK-4482 in the lungs of
animals, MK-4482 and the EIDD-1931 metabolite were measured
in clari�ed lung homogenate by liquid chromatography and mass
spectrometry (LCMS) at the point of necropsy. Since SARS-CoV-
2 is a respiratory disease, levels of drug in lung tissue are expected
to be the best indicator of therapeutic potential. All treated ani-
mals displayed detectable levels of EIDD-1931 in the lung
and levels were similar across treatment groups (pre-infection:
18.80 ± 5.97 nmol/glung, post-infection 17.56 ± 5.49 nmol/glung)
(Supplementary Table 1) (Fig. 4b). In line with its demonstrated
rapid hydrolysis to EIDD-1931 following absorption, MK-4482
was not detected in the tissue13,16. Concentration is dif�cult to
estimate in tissues due to non-homogenous drug distribution and
organ hydration. On average, water content of the lung is
approximately 80% by weight and this number can be used to
calculate a conservative estimated EIDD-1931 concentration in
the tissue under the assumptions of homogenous distribution and
hydration21. These estimates suggest a concentration of 15.04 ±
4.78 µM in the pre-infection group and 14.05 ± 4.39 µM in the
post-infection group at the point of necropsy (12 h post-�nal
MK-4482 dose) (Supplementary Table 1) (Fig. 4b). These values
compare well with previous studies where a single oral dose of
MK-4482 at 128 mg/kg in ferrets (compared to 250 mg/kg in our
study) resulted in EIDD-1931 lung concentrations of 10.7 ±
1.2nmol/g13. While our study was not designed to assess detailed
pharmacokinetics of MK-4482, the similarity in EIDD-1931 levels
observed in the lungs of hamsters with those of ferrets from this

Fig. 1 EIDD-1931 inhibits SARS-CoV-2 replication in human lung epithelial Calu-3 cells. Cells were pretreated for 1 h with differing EIDD-1931
concentrations, followed by infection with SARS-CoV-2 at a MOI of 0.01 for 1 h. After 1 h, media was replaced, and cells were cultured in the presence of
drug for 24 h at 37 °C in a 5% CO2 incubator. a Virus yield in the cell supernatant was measured by quantitative RT-PCR of clarified culture supernatant by
using primer and probe sets to quantify total viral RNA (N gene; genomic and subgenomic RNA). b DMSO control versus media. Replicates were analyzed
in duplicate (mean ± SD are shown). c IC50 values were determined using results from the RT-PCR following log-based transformation of drug
concentrations and normalization to percentage inhibition based on diluent alone controls by fitting to drug-dose response curves using Prism software.
d Absence of toxicity (>90% viability; shown by dotted line) at highest EIDD-1931 concentration used for analysis of SARS-CoV-2 replication (40�M) was
confirmed using CellTiter-Glo® 2.0 Assay (Promega, Corp., Madison, WI, USA) as per the manufacturer’s protocol. Individual sample values of replicates
are shown.
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earlier study13 suggests a comparable drug behavior across these
models.

MK-4482 has been shown to function as an RNA
mutagen13,14,16. Viral RNA isolated from lung samples was
sequenced and examined for mutations. When compared to the
vehicle, viral genomes from MK-4482 treated animals had a
signi�cant accumulation of nucleotide substitutions (Supple-
mentary Table 2). The mutational spectra associated with this
cytosine analog was also consistent with its function, substituting
as either a cytosine or uracil residue, which resulted in increased
accumulation of adenosine-to-guanosine and cytosine-to-uracil
transitions in viral genomes (Supplementary Table 2). Together,
these results are consistent with the RNA mutagenesis function of
MK-4482 in the reduction of infectious virus and disease in
treated animals.

Discussion
In the present study, we used the established Syrian hamster
animal model17,18 to assess the inhibitory effect of the nucleoside
analog MK-4482 on SARS-CoV-2 replication in vivo. Our study
shows the capacity of MK-4482 to substantially reduce the
replication of SARS-CoV-2 in the lungs based on both viral RNA

genome copy number and levels of infectious virus. Importantly,
this control of virus replication was associated with markedly
reduced lung pathology. MK-4482 has been shown to inhibit the
replication of other related human coronaviruses, MERS-CoV
and SARS-CoV-1 in mouse models16.

Following submission of our manuscript, a preprint of a similar
study in a Syrian hamster model was released22. This study also
showed an inhibitory effect of MK-4482 on SARS-CoV-2 repli-
cation and lung disease. Although similar in design, a number of
details including SARS-CoV-2 challenge titer and virus strain
differ between the two studies, and may account for the greater
reported effect of MK-4482 pre-treatment on virus lung levels in
the later study. Importantly, however, both studies support a
signi�cant effect of MK-4482 pre-treatment on SARS-CoV-2
replication in the lung, both in terms of viral RNA and virus titer,
which was also re�ected in decreased lung pathology. In our
study, treatment at 12 h post-infection maintained the effect of
MK-4482 on both viral RNA (1-log) and virus lung titers (2-logs),
which was also seen as decreased SARS-CoV-2 antigen lung levels
and by its protective effect against lung pathology. In contrast, an
inhibitory effect was largely lost in the preprint study when
treatment was initiated at 24 h post-infection (the 12 h post-
infection time point was not tested)22. Whether these re�ect real

Fig. 2 Syrian hamster model—study design, viral shedding, viral load, infectious titers, and viral antigen. a Hamsters were intranasally infected with
SARS-CoV-2. MK-4482 was administered pre-infection at 12 and 2 h before infection, or post-infection starting 12 h post-infection. Treatment was
continued in both groups every 12 h for 3 consecutive days. Animals were euthanized on day 4 and lungs were harvested. T = treatment (red: pre-infection
and black: post-infection treatments); I = infection; S = swab samples and N = necropsy. b Oral swab samples (N = 6 per group) were collected on days 2
and 4 post-infection and viral shedding determined by RT-PCR (p Value Vehicle vs Pre-treatment = >0.9999, p Value Vehicle vs Post-treatment =
>0.9999, One-way ANOVA, Kruskal–Wallis test). c Oral swab samples (N = 6 per group) were titered for infectious virus (TCID50) on Vero E6 cells43

(p Value Vehicle vs Pre-treatment = 0.5701, p Value Vehicle vs Post-treatment = >0.9999, One-way ANOVA, Kruskal–Wallis test). d Lung viral loads
(N = 6 per group) were determined by using RT-PCR (p Value Vehicle vs Pre-treatment = 0.0189, p Value Vehicle vs Post-treatment = 0.1032, One-way
ANOVA, Kruskal–Wallis test). e Lung samples (N = 6 per group) were homogenized and titered for infectious virus (TCID50)43 on Vero E6 cells. Two
independent lung samples were measured from each animal (N = 12 per group) (p Value Vehicle vs Pre-treatment = 0.0091, p Value Vehicle vs Post-
treatment = 0.0102, One-way ANOVA, Kruskal–Wallis test). b–e Blue circle, vehicle control; red square, pre-infection treatment; green triangle, post-
infection treatment. Summary of Results: b, c No statistical significance in virus shedding (RT-PCR or TCID50) between either of the two MK-4482
treatment groups and vehicle controls. d Significant difference in lung viral loads (RT-PCR) between pre-infection group compared to the vehicle control.
Although post-infection group trended towards lower levels, no significant difference between this group and vehicle control. e Infectious titers in the lungs
(TCID50) were significantly different between both pre-infection and post-infection groups, compared to vehicle control group, but no significance was
found between treatment groups from each other. One-way ANOVA followed by Kruskal–Wallis analysis and a pairwise Wilcox test was used to analyze
differences among groups. *p < 0.05, **p < 0.008.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-22580-8

4 NATURE COMMUNICATIONS |         (2021) 12:2295 | https://doi.org/10.1038/s41467-021-22580-8 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


Fig. 3 Pathological analysis of the lung tissue. Hematoxylin and eosin (H&E) staining was used on lung sections to examine lung pathology post-
inoculation. Immunohistochemistry (IHC) was used to detect viral antigen in the same lung sections from each animal (N = 6 per group). a, d, g Untreated
vehicle control, (b, e, h) pre-infection treatment with antiviral drug MK-4482 and (c, f, i) post-infection treatment with MK-4482. (a–f) H&E stain (g, h, i)
IHC for SARS-CoV-2 nucleocapsid antibody. a Lung 20X: multifocal, moderate broncho-interstitial pneumonia. b, c Lung 20X: minimal peribronchial
interstitial pneumonia. d Lung 200X epithelial cell necrosis (arrow), edema (asterisk), interstitial pneumonia (arrowhead). e, f peribronchial and interstitial
infiltrates (arrow). g Lung 20X; insert 200X: numerous immunoreactive bronchiolar epithelial cells, type I and II pneumocytes and fewer macrophages.
h, i Lung 20X; insert 200X: scattered to moderate numbers of immunoreactive bronchiolar epithelial cells, type I and II pneumocytes and macrophages.
Pictures were taken in RGB color space (sRGB IEC61966-2.1) with a threshold set to 128. a–c, g–i Scale bar is 200�m. d–f Scale bar is 20�m.

Fig. 4 Morphometric analysis of viral antigen and drug concentration in the lungs. a A longitudinal cross section of the right lung of each animal (N = 6
per group) was stained for viral antigen and scanned to measure the total amount of viral antigen present in the lung section. b EIDD-1931 concentrations in
the lungs. a, b Blue circle, vehicle control; red square, pre-infection treatment; green triangle, post-infection treatment. Summary of results. a The area of
lung staining positive for viral antigen showed a statistically significant difference between both of the MK-4482 treatment groups, compared to vehicle
controls. No difference between individual treatment groups was present. (One-way ANOVA followed by Kruskal–Wallis analysis and a pairwise Wilcox
test was used to analyze differences among groups. **p < 0.008).
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differences in the potential treatment window for MK-4482
between the two studies is not possible to ascertain without
additional investigation, but is consistent with direct acting
antivirals being most effective in modifying disease outcome
when administered as early as possible following infection23.

Since our initial submission, a study by Cox et al (2021)24 using
a ferret SARS-CoV-2 transmission model has shown an inhibi-
tory impact of MK-4482 on virus levels in the upper respiratory
tract corresponding to a decreased virus transmission between
cohoused animals. The ferret model appears to be more suited to
SARS-CoV-2 transmission studies rather than the assessment of
lung load and associated lung disease, with an absence of
detectable titers of virus in lung tissues of ferrets at any time post-
infection. The results from the ferret study appear to contradict
our observed absence of any differences in viral RNA levels of
oral swabs between treatment groups and controls. Hamsters
have been used to assess the effect of drug treatments on trans-
mission of SARS-CoV-2 between cohoused hamsters25. Although
the results from the ferret model strongly support an inhibitory
effect of the drug on transmission24, additional studies in the
hamster will be needed to assess the effect of MK-4482 on this
parameter.

Currently, only a single drug (GS-5734) has been given EUA by
the FDA for treatment of SARS-CoV-2 induced COVID-19
disease9, with broader adoption of this drug for the treatment of
COVID-19 patients remaining an area of ongoing discussion12.
Rather than having an impact on mortality, the FDA EUA was
based on a demonstration of reduced recovery time for hospita-
lized patients with COVID-1910. In a study performed in the
rhesus macaque model, GS-5734 administered at 12 h post-
infection was shown to lower both the peak infectious titers of
SARS-CoV-2 in bronchoalveolar lavage (BAL) and virus genome
copy number in the lung at day 7 post-infection by approximately
2-logs11. Currently, there is no data showing the ef�cacy of GS-
5734 against SARS-CoV-2 in the Syrian hamster model, but
treatment starting a day prior to infection and continued twice
daily thereafter resulted in signi�cant improvement of SARS-
CoV-2 infection in adenovirus 5-hACE2 transduced mice26.
However, the hamster and macaque models appear relatively
comparable, with both being associated with a rapid increase in
SARS-CoV-2 replication in the lung and other respiratory tissues
and rather mild clinical disease17,18,27. Given these similarities,
MK-4482 should likely be considered as a potential additional
treatment option for COVID-19 patients.

Similar to GS-5734, MK-4482 exhibits broad inhibition of
divergent RNA viruses13–16,28–30. Although both drugs are
nucleoside analogs, MK-4482 has been shown to function as an
RNA mutagen inducing genome catastrophe16,31, while GS-5734
is a non-obligate RNA chain terminator32. The function of MK-
4482 as an RNA mutagen may raise concerns regarding ‘off-
target’ mutagenic toxicity. However, even at an EIDD-1931 dose
of 500 mg/kg, treatment of mice in a MERS-CoV model did not
increase mutation rates of the ISG15 mRNA transcript, a gene
highly induced during MERS-CoV infection, whilst viral genes
accumulated mutations16. The incorporation of ribonucleosides
has also been shown to be highly selective for RNA compared to
host DNA33. For example, the guanosine ribonucleoside analog,
ribavirin, which has several mechanisms of action including one
of RNA mutation/error catastrophe, has been used in the past in
patients, including children with severe lower respiratory tract
infections and is still used in combination for the treatment of
hepatitis C34,35. If deemed safe, MK-4482 would join GS-5734 as
the second broadly direct acting antiviral to target emerging RNA
viruses, and in this case, speci�cally SARS-CoV-2.

Infectious disease pathology is a complex interplay between the
pathogen and the host. Consequently, strategically planned

combination therapy may be more effective than the use of single
drugs. Combinations of drugs with different mechanisms of
action would be preferable. Such combination therapy has been
shown to be highly effective for the control of other viral
pathogens, notably human immunode�ciency and hepatitis C
virus infection36,37. Therefore, the combination of MK-4482, an
RNA mutagen, with the non-obligate RNA chain terminator, GS-
5734, may yield additional ef�cacy in the treatment of SARS-
CoV-2 infections. Additional combination partners could be
potent neutralizing antibodies38. In addition, immune response
modifying drugs such as dexamethasone have been shown to be
effective for the later deleterious host responses associated with
COVID-19 disease39. The combination of such a therapeutic with
direct antivirals, such as MK-4482 and GS-5734, may increase
treatment ef�cacy, especially in more severe cases. Any potential
combination would need to be tested in vitro and in preclinical
models to establish the anticipated synergy or added effect, rather
than any unexpected absence or antagonism between drug
combinations.

GS-5734 is currently only administered by the intravenous
route. A clear advantage of MK-4482 is the capacity for oral
administration, which opens up the possibility for use of the drug
as a post-exposure treatment. Our data suggest that initiation of
treatment within 12 h of a productive exposure resulting in
infection signi�cantly reduces SARS-CoV-2 replication and
associated pathology in the lung target organ. Consistent with this
idea, direct acting antivirals, including GS-5734 have been shown
to be most effective in modifying disease outcome when admi-
nistered early following infection23. If adequately priced for
widespread global use, we believe that MK-4482 should be con-
sidered as an oral post-exposure application for SARS-CoV-2.

Methods
Biosafety and ethics. Work with infectious SARS-CoV-2 complied with all rele-
vant ethical regulations for animal testing and research. The hamster study received
ethical approval from the Rocky Mountain Laboratories Animal Care and Use
Committee (IACUC, Protocol # 2020-044-E) and was performed in a high bio-
containment laboratory at Rocky Mountain Laboratories (RML), NIAID, NIH.
Animal work was performed by certi�ed staff in an Association for Assessment and
Accreditation of Laboratory Animal Care International accredited facility. Work
followed the institution’s guidelines for animal use, the guidelines and basic
principles in the NIH Guide for the Care and Use of Laboratory Animals, the
Animal Welfare Act, United States Department of Agriculture and the United
States Public Health Service Policy on Humane Care and Use of Laboratory
Animals.

Syrian hamsters were group housed in HEPA-�ltered cage systems enriched
with nesting material and were provided with commercial chow and water ad
libitum. Animals were monitored at least twice daily throughout the study.

Virus and cells. SARS-CoV-2 isolate nCoV-WA1-2020 (MN985325.1) (https://
www.ncbi.nlm.nih.gov/nuccore/MN985325) was kindly provided by the Centers
for Disease Control and Prevention, Atlanta, GA, USA40 and propagated once at
RML in Vero E6 cells in high glucose DMEM (Sigma) supplemented with 2% fetal
bovine serum (Gibco), 1 mM L-glutamine (Gibco), 50 U/ml penicillin and 50 �g/ml
streptomycin (Gibco). The virus stock used was free of contaminations and con-
�rmed to be identical to the initial deposited Genbank sequence (MN985325.1).
Vero E6 cells were maintained in high glucose DMEM supplemented with 10%
fetal calf serum, 1 mM L-glutamine, 50 U/mL penicillin and 50 �g/mL
streptomycin.

Syrian hamster study design. Hamsters were divided into groups for either pre-
infection or post-infection MK-4482 treatment (n = 6 per group). Groups were
then treated with MK-4482 (250 mg/kg) [MedChemExpress dissolved in 10 %
polyethylene glycol (PEG)� 400; 2.5% Cremophor RH40 in water] at 12 h and 2 h
prior to infection (pre-infection group) or 12 h following infection (post-infection
group). Treatment was then maintained with 12 h dosing until the completion of
the study 84 h post-infection (day 4). A third group consisted of vehicle control
animals that received the same dosing schedule and volume as the pre-infection
group. All groups were infected intranasally with 5 × 102 TCID50 of SARS-CoV-2
(25 µL/nare). Animal weights were collected once daily and animals were mon-
itored twice daily for disease signs and progression. All procedures were performed
on anesthetized animals. Oral swabs were collected on days 2 and 4 post-infection.
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Animals were euthanized on day 4 post-infection and lung tissues were collected at
necropsy for pathology and virology.

Liquid chromatography and mass spectrometry (LCMS). LCMS grade water,
methanol, acetonitrile and acetic acid were purchased through Fisher Scienti�c. All
synthetic standards for molecular analysis were purchased from MedChemExpress.
Clari�ed lung homogenates were gamma-irradiated (2 megarads) for removal from
biocontainment according to IBC-approved protocol41. Standard curves of MK-
4482 and EIDD-1931 were made in lung homogenate from uninfected animals and
subjected to irradiation to account for molecular degradation. Samples were pre-
pared for analysis by adding 300 µL of methanol to 100 µL of homogenate and
incubating at 4 oC for 30 min to precipitate macromolecules. Samples were cen-
trifuged at 16,000g at 4 oC and the supernatant was transferred to a sample vial for
LCMS analysis. Samples were separated by HILIC chromatography on a Sciex
ExionLC™AC system. Samples were injected onto a Waters XBridge® Amide
column (130 Å, 3.5 µm, 3 mm × 100 mm) and eluted using a binary gradient from
95% acetonitrile, 0.8% acetic acid, 10 mM ammonium acetate to 50% acetonitrile,
0.8% acetic acid, 10 mM ammonium acetate over 8 min. Analytes were measured
using a Sciex 5500 QTRAP® mass spectrometer in positive mode with electrospray
ionization (CUR: 40, CAD: Med, ISV: 2500, Temp: 450, GS1: 50, GS2: 50). Multiple
reaction monitoring (MRM) was performed using the optimized conditions in
Supplementary Table 3. To ensure signal �delity triggered spectra were compared
back to synthetic standards. Previously published MRM signals for biological
nucleosides were utilized to con�rm minimal interference at the retention time of
interest42. All analytes were quanti�ed against an 8-point calibration curve of the
respective synthetic standard prepared in the target matrix and processed in the
same manner as experimental samples. Limit of quanti�cation in lung homogenate
after irradiation was 5 ng/mL for EIDD-1931 and 50 pg/mL for MK-4482.

Virus load. RNA was extracted from swabs using the QIAamp Viral RNA kit
(Qiagen) according to the manufacturer’s instructions. Tissues were homogenized
in RLT buffer and RNA was extracted using the RNeasy kit (Qiagen) according to
the manufacturer’s instructions. For detection of viral RNA, 5 µl RNA was used in a
one-step real-time RT-PCR against the N gene which detects genomic and sub-
genomic RNA17 using the Rotor-Gene probe kit (Qiagen) according to instructions
of the manufacturer. In each run, standard dilutions of RNA standards counted by
droplet digital PCR were run in parallel, to calculate copy numbers in the samples.
A complete list of primers is shown in Supplementary Table 4.

Virus titration. Virus isolation was performed on lung tissues by homogenizing
the tissue in 1 mL DMEM using a TissueLyser (Qiagen) and inoculating Vero E6
cells in a 96-well plate with 200 µL of a 1:10 dilution series of the cleared homo-
genate. One hour after inoculation of cells, the inoculum was removed and replaced
with 200 µL DMEM (Sigma-Aldrich) supplemented with 2% fetal bovine serum, 1
mM L-glutamine, 50 U/mL penicillin and 50 µg/mL streptomycin. Six days after
inoculation, cytopathogenic effect was scored and the TCID50 was calculated using
the Reed-Muench method43.

Histopathology and immunohistochemistry. Histopathology and immunohis-
tochemistry were performed on hamster lung tissues. Tissues were �xed in 10 %
Neutral Buffered Formalin with two changes, for a minimum of 7 days according
to IBC-approved SOP. Tissues were placed in cassettes and processed with a Sakura
VIP-6 Tissue Tek, on a 12-h automated schedule, using a graded series of ethanol,
xylene, and PureAf�n. Embedded tissues were sectioned at 5 µm and dried over-
night at 42oC prior to staining. Speci�c anti-CoV immunoreactivity was detected
using Sino Biological Inc. SARS-CoV/SARS-CoV-2 nucleocapsid antibody (Sino
Biological cat#40143-MM05) at a 1:1000 dilution. The secondary antibody was the
Vector Laboratories ImPress VR anti-mouse IgG polymer (cat# MP-7422). The
tissues were then processed for immunohistochemistry using the Discovery Ultra
automated stainer (Ventana Medical Systems) with a ChromoMap DAB kit (Roche
Tissue Diagnostics cat#760-159). The tissues slides were scanned with the Aperio
ScanScope XT (Aperio Technologies, Inc.) and the entire section analyzed with the
ImageScope Positive Pixel Count algorithm (version 9.1)44. All tissue slides were
analyzed by a board-certi�ed veterinary pathologist.

Next-generation sequencing. Lung derived RNA samples were treated with Ribo-
Zero H/M/R rRNA (Illumina, San Diego, CA) depletion mix following a 40�l total
volume; 4�L reaction buffer, 8�L probes, and 28�L sample. All incubation times fol-
lowed the Ribo-Zero manual. After Ampure RNACleanXP (Beckman Coulter, Brea,
CA) puri�cation, the enriched RNA was eluted in 6�L of water. Following the Truseq
Stranded mRNA Library Preparation Guide, Revision E., (Illumina, San Diego, CA), 5�L
was added to 13�L of Elute-Frag-Prime Buffer and continued through second-strand
cDNA. Library preparation continued with the adenylation of ends following the
manufacturer’s recommendations. Final libraries were visualized on a BioAnalyzer
DNA1000 chip (Agilent Technologies, Santa Clara, CA) and quanti�ed using KAPA
Library Quant Kit (Illumina) Universal qPCR Mix (Kapa Biosystems, Wilmington, MA)
on a CFX96 Real-Time System (BioRad, Hercules, CA). Libraries were diluted to 2 nM
stock, pooled together in equimolar concentrations and sequenced on an Illumina
MiSeq using a Micro v2 sequencing kit at 2 × 150-bp. These data were used to make a

new 2 nM pool so that virus coverage was normalized across samples. Subsequent
sequencing was performed on an Illumina NextSeq 550 using a Mid Output
v2.5 sequencing kit at 2 × 150-bp. Viral genome read depth coverage was greater than
100× for all samples.

Next-generation sequencing data analysis. Raw fastq reads were adapter trim-
med using Cutadapt v 1.1245, followed by quality trimming and quality �ltering
using the FASTX Toolkit (Hannon Lab, CSHL). Reads were paired up and aligned
to the SARS-CoV-2 genome from isolate SARS-CoV-2/humanUSA/WA-CDC-
WA1/2020 (MN985325.1) using Bowtie2 v 2.2.946. PCR duplicates were removed
using Picard MarkDuplicates v 2.18.7 (Broad Institute). Variant detection was
performed using GATK HaplotypeCaller v 4.1.2.047 with ploidy set to 2.

Statistical analyses. Data was collected in Excel, v16.4 and graphed using Prism v8
(GraphPad). Statistical analysis was performed in R version 4.0.2. The difference in viral
load between study arms was assessed by One-way ANOVA followed by a Kruskal-
Wallis test and a pairwise Wilcoxon rank sum test to correct for multiple comparisons.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data that support the �ndings of this study are available from the corresponding
author upon reasonable request. Next generation sequencing data have been deposited in
NCBI under BioProject accession number PRJNA691961. Source data are provided with
this paper.
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