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Abstract
Subsea cable localisation is a demanding task that requires 
a lot of time, effort and expense. In the present paper the 
authors propose a methodology that is automated and inex-
pensive, based on magnetic detection from a small unmanned 
surface vehicle (USV) and the use of a batch particle filter 
(BPF) algorithm. A dynamic path planning algorithm for the 
USV is also developed so that adequate samples of the 
magnetic field readings can be gathered for processing by 
the BPF. All of these elements work together online as the 
cable is tracked, which was demonstrated in a simulated 
mission. 

Keywords: batch particle filtering, subsea cable tracking, 
weighted interval kalman filtering, fuzzy logic

1. Introduction
Technological advancement has brought with it 
an increasing number of maritime transportation 
links and offshore structures, and these are set to 
increase. For example, the UK government has 
recently announced plans to develop what will be 
the world’s largest offshore wind farm off the coast 
of Suffolk, UK (Guardian, 2014). Such farms require 
arrays of subsea cables to link each of the turbines 
together as well as to offshore substations. Detection 
of such cables is important for periodical inspec-
tion and maintenance.

Cable detection methods that are presently used 
have come a long way, but their scope is still fairly 
limited. Optical inspection, hydroacoustic localisa-
tion and magnetic detection are the three main 
methods for subsea surveys. The main limitation of 

the first two are that they fail to detect cables that 
are buried or hidden under plant growth, as is often 
the case in coastal and shallow waters (Szyrowski 
et al., 2013a). 

Detection of subsea ferromagnetic objects is 
mainly based on mathematical inversion methods 
(Cowls and Jordan, 2002; Won, 2003). Two or more 
magnetic detectors separated some distance from 
one another are used to measure the magnetic field 
(MF) emitted by the ferromagnetic object or induced 
current, whereby its location can be determined 
through triangulation. However, this method is only 
accurate up to a range of 3m (Takagi et al., 1996; 
Kojima et al., 1997; Szyrowski et al., 2013b). This 
reduced range translates into requiring a diver or 
expensive underwater vehicle to perform the survey.

In the present paper, a solution to this problem 
is proposed whereby the detection of a subsea cable 
is carried out by an autonomous vehicle from the 
surface. To achieve this, the authors have devel-
oped a precise vehicle navigation system, as well as 
a guidance algorithm that directs the vehicle along 
required pathways that enable a stream of measure-
ments of the MF to be collected. From this data, a 
novel localisation algorithm based on particle filter-
ing (PF) is applied to determine the location of the 
source of the MF. 

Instead of using a single measurement from 
each of the distance-separated magnetic detectors 
and then trying to determine the source by inver-
sion methods, the batch particle filter (BPF) uses 
several measurements of the MF taken in the vicin-
ity of the source. In order to acquire these, the 
unmanned surface vehicle (USV) inspects the area 
where the cable is thought to lie. Once a meaning-
ful reading of an MF is obtained, a specific survey 
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path that crosses the cable is dynamically planned 
and further measurements are gathered. 

A fuzzy logic algorithm is used to distinguish 
between meaningful readings that originate from 
the MF induced by the cable and the surrounding 
magnetic noise. When the cable has been crossed 
and no more meaningful readings are obtained, 
the set of readings is given to the BPF, which then 
estimates the exact crossover point of the cable based 
on all the readings obtained. Using this informa-
tion, the position of the cable some distance down-
stream is estimated, and the vehicle’s survey path is 
re-planned. 

The USV must be able to trace the planned sur-
vey path and, above all, localise itself and accurately 
determine its heading at every instant. The precise 
localisation not only enables smooth autonomous 
navigation, but also gives the MF readings taken 
along directions relative to the vehicle’s own head-
ing. In order to compare the successive readings, 
they must all be described in a common global ref-
erence frame before using them to determine the 
magnetic source. Hence, a novel, robust heading esti-
mation technique based on interval Kalman filter-
ing has been applied to estimate the USV’s heading.

The BPF algorithm has been tested offline on real 
subsea cable survey data gathered during a manned 
expedition. Although the MF in this case was 
induced by an alternating current flowing through 
the cable, the method can be applied to localising 
any ferromagnetic object by equipping the USV 
with an eddy current inducing coil for generating a 
magnetic response in the object. The integration of 
the BPF source estimation method with autonomous 
USV navigation and path planning has been tested 
on computer simulations, with sea trials being 
planned for the future.

This approach offers advantages with respect to 
conventional methods, for example, enabling oper-
ations in hazardous environments without risking 
divers’ safety or needing to employ manned ships. 
Moreover, autonomous tracking of the dynamically 
planned path is carried out accurately and efficiently, 
avoiding delays in the control loop that would inev-
itably exist in relaying information continuously 
regarding the path updates to the crew of a manned 
vessel, saving both time and costs.

The rest of the present paper is organised as fol-
lows: the BPF algorithm and its motivation as an 
efficient tool for subsea ferromagnetic object local-
isation is presented in section 2. The fuzzy logic 
algorithm used for discriminating meaningful 
readings from noise is also described in section 2. 
Section 3 then discusses the autonomous operation 
of the USV, with emphasis on the robust heading 
estimation procedure using the so called weighted 

interval Kalman filter (WIKF). Section 4 details the 
simulation of a cable-tracking mission, and finally 
conclusions and future objectives are discussed in 
section 5.

2. Selective batch particle filtering  
for ferromagnetic object localisation
In order to detect ferromagnetic objects, these 
must emit an MF. An MF in ferrous objects origi-
nates from electric currents flowing within them. 
In objects such as cables or pipes, an electric current 
can be injected, thereby producing an MF. Where 
this is not possible, an alternating MF generated by 
an external agent can induce eddy currents in the 
body of the object, which then emits a secondary 
MF that can be detected (Cowls and Jordan, 2002; 
Tumanski, 2007).

In the maritime subsea environment, the propa-
gation of the MF is highly affected by the conduc-
tivity of the sea water, which depends on its salinity 
(Bogie, 1972; King, 1989). Currently used methods 
for subsea cable localisation, which are short range 
and applicable only within distances of up to 3m 
from the source, assume that the conductivity of the 
water is uniform and can be neglected (Szyrowski 
et al., 2013b). They also assume the MF decay, as a 
function of the distance from the source, follows a 
simple decay function, and hence the difference 
between two readings separated by a known distance 
allows inference of the distance of the readings 
from the source. However, Cowls and Jordan (2002) 
have pointed out that this assumption is not always 
true: although the signal strength generally decays 
as r –3, it can include some variation and can be dif-
ficult to calculate precisely. 

The strength of the MF generated by a subsea 
cable on the water surface can be modelled as a 
scalar field, as shown in Fig 1. In the case of a cable 
with small curvature, the MF generated by the cable 
at any point in space (Pk) can be approximated by 
that owing solely to the point of the cable (Sk) that 
is closest to Pk , i.e.:

B
I

a r
d P S

k
k k kk � � �� �� ��

�
0

34
 (1)

where dk is the direction of the cable at point Sk ; rk 
is the shortest distance to the cable; a is an attenua-
tion parameter; µ0 is the permeability of free space; 
and I is the electric current. In a small area, the 
parameter (a) can be considered to represent an 
averaged attenuation; hence, for a short section of 
cable, the term �

�
0
4

I
a  can be grouped into a single 

constant (c). Note that the contribution to the MF 
at Pk is mostly owing to the section of cable around 
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Sk, and is not much affected by portions of the cable 
further away where the attenuation might be differ-
ent. Hence, MF can be described as:

B c
d P S

r
k k k

k
k �

� �� �� �
3

 (2)

The problem of determining the location of 
the source (Sk) from measurements of the MF at 
various sample points also must include estimating 
the local value of the parameter c. This problem 
can be thought of as a regression of the various 
measurements of the MF vector at various sample 
points on the sea surface onto the model described 

by Equation 2 parameterised by source points (Sk), 
direction vectors (dk) and the averaged attenuation 
(c) (Fig 2).

If it can be considered that the sample points all 
correspond to the same source (i.e. that they are 
obtained from crossing the cable perpendicularly), 
then the problem is simplified to determining one 
source (in addition, to the average attenuation (c)). 
This scenario is depicted in Fig 3, in which the plane 
(Πk) is perpendicular to the cable at the intersec-
tion point (Sk). Then for each sample point (Pk) on 
the surface along the line (lk = W ∩Πk), Sk is the 
closest point of the cable to it. In this case, the MF 
vector Bk at each Pk is contained within the plane Πk.

Fig 1: Distribution of magnetic field from long ferromagnetic wire
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The successive MF measurements along lk from a 
horizontal coil whose axis is aligned with the direc-
tion of lk are then established. The readings are 
generated according to Equation 2 for simulation 
purposes, using values of current and attenuation 
measured from previously conducted trials on the 
Baltic Sea (Szyrowski et al., 2014), and generated at 
regular intervals along lk. This is consistent with tak-
ing samples at regular time intervals from the USV 
moving along lk at constant speed.

The coil readings can be expressed as:

z h x v
C v

C v

B h v

B z vk k k
H k

H

V k
V

k k k
H

k k
V
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 (3)

where (CH + vk
H) corresponds to the output from 

the horizontal coil, and (CV + vk
V) corresponds to 

the output from the vertical coil; vk
H and vk

V are 
random measurement noises associated with the read-
ings; hk represents a unit-length vector in the direc-
tion of the horizontal coil axis, which is assumed to 
be the same as the direction of the line (lk); and z 
is a vertical unit-length vector. The total MF is the 
vector sum of these two components.

The coil measurements in terms of the locations of 
the sampling point, cable source and the average 
attenuation parameter can be obtained simply by sub-
stituting Equation 2 into Equation 3, and is given by:
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Having assumed that dk is perpendicular to 
Πk – i.e. that the vehicle moves along a path 
perpendicular to the direction of the cable – Equa-
tion 4 reduces to: 

z
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where θ is the angle between Bk and lk. Equation 5 
is used in the implementation of a BPF to estimate 
the source Sk for a single crossover line lk.

Particle filters (PF), introduced by Gordon (1993), 
are a tool to estimate the posterior probability den-
sity function (PDF) of state variables from obser-
vations (Crisan and Obanubi, 2012; Fallon and 
Godsill, 2010). PFs use a recursive scheme to approx-
imate the PDF by a set of random samples called 
particles, which tend to concentrate in regions of 
high probability density, serving to approximate the 
true PDF. The operation of the PF algorithm is 
schematically represented in Fig 4. An initialisation 
step generates random particles representing a hypo-
thetical cable location and an attenuation parameter. 
The particles have a weight assigned to them on the 
basis of the distance, or error, between the hypo-
thetical MF they represent and the experimental 
data. The particles are resampled and regenerated 
until they converge to the area which guarantees a 
satisfactory error. (The reader interested in a more 
detailed description of PF may consult Szyrowski 
et al. (2014).) 

In the BPF algorithm, each particle, which is rep-
resentative of a possible location of the cable source, 
has an associated weight or probability, and the most 
plausible location is given by the particle with the 
largest weight. The rest of the particles in the set 
tend to cumulate around this solution. In a regen-
eration stage, only a quarter of the particles, those 
with the highest weights, are maintained. Each one 

Surface W

Cable

Bk

Πk

Pk Sk

lk

Fig 3: Basic cable-tracking parameters

Fig 4: Particle filter algorithm
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of these particles then generates three new particles 
randomly in the space surrounding it. The higher 
the weight of the mother particle, the smaller is the 
surrounding area in which the new particles are 
allowed to be generated. Thus, particles with smaller 
weights will have their children cover a wider area, 
whilst those particles with high weights will con-
ceive particles that are very close to themselves. 
After the regeneration step, the algorithm starts a 
new iteration where for each particle, the MF and 
the resulting theoretical coil readings are gener-
ated. According to how well each of these fit the 
actual readings, their weights are then computed. 

In order to start the algorithm, a set of initial 
particles must be chosen. First, a region of interest 
(ROI) is established. Then, the horizontal coil 
readings of the MF should, in theory, reach a peak 
value when the reading is taken directly above the 
cable – that is, when the path (lk ) apparently inter-
sects the cable when viewed from above. At this 
point, the theoretical reading from the vertical coil 
should be zero. Based on this observation, the ROI 
is chosen as a rectangular area below the sample 
point with the maximum difference between hori-
zontal and vertical coil reading. In practice, this 
reading might not necessarily correspond to a meas-
urement taken directly above the cable, as the read-
ings incorporate a stochastic measurement noise. 
Thus, the ROI is extended so as to cover a horizon-
tal distance corresponding to the abscissas of the 
five previous and five posterior measurement loca-
tions as well. 

During an actual survey, the depth of the water 
column is measured with an echo-sounder at each 
sample point. It is conceivable that the cable could 
be buried up to 3m under the seabed, and that cer-
tain sections may be suspended in the water above 
it. Hence, the height of the ROI is taken from 3m 

below the seabed to 2m above it. In the simulation 
carried out herein, the seabed was assumed to lie at 
a constant 10m below the surface. For one cross-
over line (lk), the simulated coil readings of the MF 
and the ROI established from these are depicted in 
Fig 5.

Once the ROI has been established, N particles are 
generated randomly within it. In the simulation car-
ried out, the number of particles was set to N = 100. 
The locations of the initial particles are shown in 
Fig 6. Each of these represents a hypothetical loca-
tion of the cable source. In addition, to each of 
these particles an averaged attenuation parameter 
c is also assigned. For the BPF algorithm, each parti-
cle is assigned a value of c randomly chosen within a 
range of 10% of the nominal value set experimentally. 

Each of the particles is then assigned a weight. In 
order to do this, the theoretical coil readings for each 
particle (hypothetical cable source location and 
parameter c) are generated according to Equations 
2 and 5. The mean square error between these and 
the actual readings is computed, normalised and 
assigned to the corresponding particle. This com-
pletes the initialisation of the BPF algorithm.

The BPF then takes on an iterative character. In 
each iteration, 75% of the particles are regenerated 
from the 25% with the largest weights. For each of 
these progenitor particles, three new particles are 
generated by adding Gaussian noise to their position 
and value of c. The amplitude of the noise added is 
inversely proportional to the engendering particle’s 
weight. The particle with the largest weight (and 
hence whose MF distribution along the sampling 
points coincides most closely to the measured one) 
generates particles closer to itself than do those 
particles with a smaller weight that are not quite so 
close to the true source, and hence spread their 
seeds further afar.

Fig 5: Region of interest ROI for MF source detection
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The new set of particles then undergoes the same 
procedure of weight assignment, and the whole 
process is repeated. During this process, the parti-
cles tend to cumulate in the region of highest prob-
ability of the location of the true source. It should 
be recalled that each of the particles also represents 
a certain value of the parameter (c). The particle 
with the highest weight represents not just the loca-
tion of the true source, but also the actual value of 
the parameter (c). Hence, the BPF algorithm gives 
not only an estimate of the most likely location of the 
true cable source, but also of the locally averaged 
attenuation rate. One of the key advantages of this 
procedure is that it is able to locate the source even 
without a correct prior estimate of the parameter 
(c), which is not possible using other well-known 
techniques such as those based on Kalman filtering.

Observation of Figs 5 to 8 reveals that much of the 
coil readings actually correspond to background 
magnetic noise rather than to any meaningful meas-
urements of the MF emitted by the cable. In order 
to both reduce the computational burden on the 

BPF and increase its efficiency, it becomes neces-
sary to filter out the unwanted readings. This is 
accomplished with discriminatory filter based on 
fuzzy logic decision-making. It is based on observ-
ing that the measurements are meaningful when 
the magnitudes of the readings are consistently 
larger than some threshold value. Based on this, in 
order to filter out some of the noise from the read-
ings, a simple moving average (SMA) of both the 
horizontal and vertical coil readings is computed. 
The average of these two SMAs is then obtained 
and used as input to the membership functions 
depicted in Fig 9.

The fuzzy decision-making is based on the fol-
lowing rules:

•	Rule 1: If SMA negative, then ff is negative;
•	Rule 2: If SMA is zero, then ff is zero; and
•	Rule 3: If SMA is positive, then ff is positive;

where the variable ff is the output of the fuzzy clas-
sifier, and its crisp value is obtained from the out-
put membership functions shown in Fig 10. 

Fig 6: Initialisation of particle representing the hypothetical source
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The value of ff, or fuzzy flag, is used as a flag to 
indicate whether the coil readings are meaningful. 
Only those readings for which ff is greater than 
zero are considered by the PF. The two vertical lines 
in Fig 5 represent the range in which the fuzzy flag 
is positive for the readings shown in the graph.

The value of the fuzzy flag ff is used to indicate 
when the coil readings are meaningful. It is initially 
set to zero, as the first readings are taken at the start 
of a crossover line (lk). When the vehicle is within a 
certain distance of the cable and the readings start 
to increase, the flag changes to 1, indicating that 
these readings should be stored and later passed on 
to the BPF. Eventually, after the vehicle has crossed 
the cable, the flag returns to zero, and the stored 
readings are sent to be processed by the BPF. The 

instants at which the flag is raised and then lowered 
again are shown as two vertical red lines in Fig 5. As 
will be described in the next section, the flag also 
serves a dual purpose, which is to indicate when the 
USV may move onto the next cable crossover line.

3. Autonomous surface vehicle navigation
The number and type of potential applications for 
autonomous USVs has increased dramatically in 
recent times with the availability of low-cost sensing 
devices (Motwani, 2012). The Springer USV, shown 
in Fig 11 (Naeem et al., 2006), is a 4m-long twin-
hull catamaran built at Plymouth University in the 
UK and is one such vehicle that is being used as a 
test-bed for developing robust intelligent naviga-
tion, guidance and autopilot systems. In particular, 
a novel heading estimation technique developed 
for Springer is described and used herein for under-
water cable localisation and tracking. 

Accurate heading estimation is, of course, impor-
tant for autonomous navigation, since the vehicle’s 
autopilot acts on it to steer the vehicle onto the 
desired course. However, it is of particular importance 
for the cable localisation method described in the 

Fig 8: Convergence of particles after 20 iterations
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present paper. This is because the measurement of 
the MF obtained from the horizontal coil depends 
on the direction of its axis, and so this direction 
(which could be chosen to coincide with that of the 
vehicle’s heading if the coil is mounted parallel to 
the vehicle’s longitudinal axis) needs to be known.

For localisation, the Springer uses a GPS receiver, 
while the heading estimation system described 
here uses a low-cost microelectromechanical sys-
tem (MEMS) gyroscope and a dynamic steering 
model of the vehicle. The gyroscope provides a 
measurement of the vehicle’s turning rate, which is 
subject to some measurement noise and can be used 
on its own to determine the heading of the vehicle. 
However, successive integration of the gyroscope 
output eventually leads to integration drift. 

As mentioned, a dynamic steering model of the 
vehicle was also used. The propulsion of the vehicle 
is based on two battery-driven trolling motors, one 
on each hull. Steering of the vehicle is controlled 
by applying a difference in motor speeds, whereas 
the overall speed of the vehicle can be changed by 
varying the average speed of the two motors. Trials 
have been conducted wherein, maintaining a con-
stant speed, the vehicle was made to carry out various 
turning manoeuvres. Data of the applied differential 
motor speed and vehicle turning rate were recorded, 
and through system identification (SI) models of 
the form in Equations 6 to 8 were obtained. Basi-
cally, the model allows one to predict the turning 
rate of the vehicle based on the applied differential 
motor speed over time. In particular, for a constant 
vehicle speed of 1 ms–1, the model obtained is char-
acterised by the values given in Equation 8: 

x(k + 1) = A x(k) + B u(k) + ω(k) (6)

y(k) = C x(k) + D u(k) (7)
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where u(k) is the differential motor speed input in 
rpm, and y(k) is the rate of change of heading of 
the vehicle; ω represents a random input distur-
bance; and Ts is the sampling period. In addition, 
actuator limitations impose the following con-
straints on the above model: |u(k)|≤1,200rpm and 
|Δu(k)| ≡ |u(k)-u(k-1)| ≤500rpm.

Both the steering model and gyroscope readings 
can be used to determine the current heading of 
the vehicle. However, they can be combined in a 
Kalman filter (KF) for improved accuracy. Based on 
the vehicle dynamic model Equations 6 to 8 and the 

gyro measurement, precise to 0.1 deg∙s–1 root mean 
square (RMS) at 1Hz sampling, i.e. with measure-
ment z(k) according to:

z k y k k N R

R s

( ) ( ) ( ) );  � �

� � �

� �

�

; ~ ( ,

cov( ) . deg

0

0 12 2 2
 (9)

The KF estimate of the state vector (̂ )x k  is 
obtained by applying Equations 10 to 14 given ini-
tial estimates of x̂  and error covariance 
P k var x k x k� �� � �� � �� �def ˆ  (Simon, 2006):

Prediction:

ˆ | ˆ |x k k x k k u k( ) A ( ) B ( )� � � � � �1 1 1 1  (10)

P( ) A P( )A QTk k k k| |� � � � �1 1 1  (11)

Kalman gain:

K( ) P( )C C P( )C RT Tk k k k k� � � �� ��
| |1 1

1
 (12)

Correction:

ˆ | ˆ | ( ) ( ) ˆ |x k k x k k k z k x k k( ) ( ) K C ( )� � � � �� �1 1  (13)

P( ) I-K( )C P( )k k k k k| |�� � �1  (14)

The heading of the vehicle can then be obtained 
from the KF estimate of the state vector as follows:

(̂ (̂ ) ˆ� �k k x k u k) C ( ) D ( )� � � � � �1 1 1  (15)

The estimated heading is used by the vehicle’s 
autopilot to generate the required differential pro-
peller speed to steer the vehicle along the desired 
path. The vehicle’s guidance system, in turn, gener-
ates and updates the reference path of the vehicle 
via a series of waypoints. A detailed description of 
the waypoint tracking and autopilot systems used 
for the autonomous operation of Springer can be 
found in Annamalai et al. (2014).

Although the use of a KF avoids gyro integration 
drift and provides a theoretically optimal estimate of 
the heading (in a statistical sense), it fails if the vehi-
cle model does not accurately reflect the true dynam-
ics of the vehicle (Motwani et al., 2013). In the case 
presented here, accurate modelling of the steering 
dynamics via SI is utopian, and at best small model-
ling errors will arise owing to inhomogeneous sea 
and wind conditions, variations in payload, etc. 

This difficulty is addressed by applying what is 
known as a weighted interval KF (WIKF), developed 
for systems with finite modelling uncertainty (Motwani 
et al., 2014b). Consider a system model, such as Equa-
tions 6 to 8, in which the model coefficients (elements 
of the matrices A, B, C and D) are not known precisely, 
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but are known to lie within certain bounds. Then, 
describing these coefficients by intervals rather than 
point-values, the resulting model is called an interval 
model. Based on this concept, the interval KF (IKF) 
was proposed as an extension to the KF for interval 
systems (Chen et al., 1997). The IKF equations mirror 
those of the standard KF, but operate on interval val-
ues instead using interval arithmetic. The state esti-
mates provided by the IKF are also in the form of 
intervals rather than point-values.

Although the IKF provides optimal state estimates 
of interval systems, in practice, a single value is 
required that most closely matches the state of the 
true system. The technique used by the WIKF is to 
obtain this estimate as a weighted average of the IKF 
bounds. This weight in turn is predicted at each 
time-step by an adequately trained artificial neural 
network (ANN) from the sequence of residual data 
of a standard KF (Motwani et al., 2014a). 

Firstly, one or several training missions are devised 
in which the USV dynamics used to simulate the vehi-
cle’s motion is made to vary within certain bounds. 
The bounds are those of the interval model being 
proposed. Two KFs are simulated to obtain estimates 
during these missions. The first is a KF that uses a 
nominal point-valued model contained in the inter-
val model. The second is a KF that uses the true 
vehicle dynamics at each instant (i.e. the dynamics 
used to simulate the vehicle’s motion). Because the 
latter is an ideal KF, its innovations comprise a white 
noise sequence. However, those of the former digress 
from being white insofar as the model used differs 
from the true vehicle dynamics. 

In addition, an IKF is also simulated based on the 
interval model. It can be shown that the ideal KF esti-
mate can be retrieved as a weighted average of the 
IKF estimate bounds, and this desired weight is calcu-
lated and stored at each time-step. Finally, an ANN is 
trained to match the innovations of the first KF dur-
ing the mission with the desired weighting sequence. 
It has been shown that such a trained network can be 
used to predict adequate weights independently of 
the true vehicle dynamics and KF nominal model 
selected for generating the training data, as long as 
they lie within the interval model that describes the 
bounded uncertainty. A detailed account of the 
WIKF can be found in Motwani et al. (2014a).

The navigational effectiveness of the WIKF over 
the use of a standard KF for uncertain systems will 
be shown in the next section on the cable-tracking 
mission.

4. Cable source tracking
To track a subsea cable from the USV, the objective 
is to criss-cross it at right angles. In each crossover 

line, the MF is measured from the coils, and the BPF 
described in section 2 is applied to determine the 
location of the source below that crossover line. The 
vehicle then advances to the next crossover line, and 
again the source location below that line is deter-
mined. From a navigational point of view, the prob-
lem of projecting these crossover lines needs to be 
addressed.

From an initial estimate of a point of the cable  
( Ŝ1 ) and an initial estimate of the cable’s direction 
at that point ( d̂1 ), the first crossover line ( l PQ1 1 1� ) 
is projected as a segment perpendicular to d̂1  from 
start point (P1) to end point (Q1) 50m on either 
side of Ŝ1  (Fig 12). These two waypoints are sent to 
the USV’s guidance system, and the vehicle 
advances at a speed of 1ms–1 from P1 to Q1. Every 1s, 
the vehicle updates its location and heading esti-
mate, and the coil readings are taken. 

Although ideally the vehicle follows the straight 
line from P1 to Q1 with its heading aligned along 
PQ1 1 , this is not always the case as there may be sur-
face currents and other environmental effects that 
distort the vehicle’s path. The estimate of the vehicle’s 

Fig 12: USV trajectory showing cable estimation process
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Ŝ1

d̂2

d̂1

80

60

40

0 50

Predicted cable direction

USV trajectory

Prior source estimate

PF source estimate

Prior waypoints

Posterior waypoints

Fig 13: Correction of horizontal coil reading

Q1

P1

Ŝ1
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heading is thus used to correct the horizontal coil 
reading of the MF for use by the BPF algorithm, 
which assumes the horizontal coil to be perpendicu-
lar to the cable’s direction at the source point Ŝ1. If 
α is the error between the heading angle of the USV 
and the direction of PQ1 1  at some instant k (Fig 13), 
then the measured horizontal coil reading, HmV ′(k), 
is corrected according to Equation 16.

HmV k
HmV k

� ��
�� �

� �cos �
 (16)

While initially the USV targets the end point Q1 
of l1, when the fuzzy inference system (see section 2) 
lowers its flag, the coil readings along this line will 
no longer be meaningful. At this point, the BPF 
determines an a posteriori or corrected cable source 
point on l1, namely S1, based on which an a priori 
estimate of the position of the source on the next 
crossover line is obtained as ˆ ˆS S d2 1 1� �� , where ρ 
is a prescribed distance (30m in this case). The esti-
mated direction of the cable at Ŝ2 , d̂2 , is set equal 
to d̂1. Having estimated Ŝ2  and d̂2  30m down-
stream, the next crossover line l P Q2 2 2�� �  is pro-
jected as a segment perpendicular to d̂2  from start 
point P2 to end point Q2, spanning 50m either side 
of Ŝ2 . There is now no further interest in the vehi-
cle reaching Q1, and therefore a new target Q 1′ on 
l1 is established just 10m ahead of the vehicle. From 
this, a path is generated between this new final 
point on l1 and the initial point on l2 (P2) via a Her-
mite spline, on which several intermediate way-
points are generated to provide a smooth turning 
path for the USV. 

For a general line li, after the a posteriori estimate 
of the source location, Si, has been determined by 

the BPF algorithm, the a priori estimate of the posi-
tion of the source on the next crossover line ( Ŝi�1) 
is obtained by extrapolating the last three source 
estimates (Si–2, Si–1, Si) with a parabolic function a 
distance of ρ further downstream. The cable’s 
direction at Ŝi�1, d̂i�1, is estimated to be that of the 
tangent to the parabola at that point. A simulation 
of the cable localisation and tracking process is 
shown in Fig 14. 

Navigational data for said simulation are given 
in Fig 15. The USV heading estimation was based 
on the WIKF technique described in the previous 
section. In order to illustrate the robustness of this 
technique, an interval model centred around Equa-
tions 6 to 8 with ±5% uncertainty on all of the val-
ues was considered. It was assumed that the vehicle’s 
true dynamics was given by the upper boundaries 
of all the intervals. Estimates of the turning rate 
and heading angle obtained from the WIKF, an 
ideal KF (based on the true vehicle dynamics), and 
a nominal KF (based on the nominal model Equa-
tions 6 to 8) are shown in Fig 15a,b. Also shown are 
the IKF bounds, the true values of turning rate and 
heading, and the gyro measurements. For com-
pleteness, the differential thrust applied by the 
autopilot is shown in Fig 15c, the innovation 
sequence of the nominal KF that is fed to the 
trained ANN in Fig 15d, and the desired and ANN-
predicted weightings for the IKF bounds in Fig 15e. 

A quantitative comparison of the turning rate 
and heading errors of each of these three filters is 
given in Table 1. Both from the figure and the table, 
it can be observed how the nominal KF heading 
estimates are biased because of the incorrect vehi-
cle model assumed. The average heading estimate 
error of the KF is almost four times that of the WIKF.

Fig 14: USV trajectory showing complete cable estimation process
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Fig 16 shows what the actual trajectory of the 
USV would be like if these headings were used for 
navigation, highlighting the importance of accu-
rate heading estimates to minimise deviation from 
the desired path. Moreover, because of the incor-
rect heading data, the readings of the MF in the 
direction of the crossover line would not be 
obtained correctly, leading to an incorrect estima-
tion of the cable source by the BPF.

5. Conclusion
The BPF algorithm for estimating the source of the 
cable was initially developed for surveys from manned 

platforms that attempted to estimate the cable’s 
position by successively criss-crossing its assumed 
path. This technique proved successful in practice 
as long as the platform was guided adequately. On 
the other hand, the WIKF was developed to provide 
the Springer USV with an accurate heading estima-
tion system to enhance autonomous operation of 
the vehicle. 

The present paper has proposed a methodology 
for autonomously carrying out subsea cable locali-
sation from a USV using the BPF algorithm. To make 
this possible, an effective dynamic path planning 
algorithm to guide the USV has been proposed. It was 
also aided by a fuzzy-logic-based data discrimination 

Fig 15: Navigational data for USV autonomous navigation using WIKF heading estimates: (a) USV turning rate; (b) USV 
heading angle; (c) differential thrust (rpm); (d) KF innovation sequence (deg); and (e) desired weighting sequence for IKF 
and ANN weight estimation
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Table 1: Navigational RMS errors of the three filters

Ideal KF WIKF Nominal KF

USV yaw rate RMS error (deg/s) 7.9696e-04 0.1478  0.5863
USV heading RMS error (deg) 0.0205 6.1234 23.3968
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procedure that indicates when meaningful coil 
readings are being obtained. This allows the USV 
to move on to the next projected crossover line 
before completing the initially projected current 
line, saving time and operation costs. 

In addition, the uncertainty and decision-making 
delays of manned navigation and guidance, which 
were observed as one of the main practical draw-
backs in the cable localisation surveys that were car-
ried out using the BPF, are greatly reduced by the 
degree of automation proposed in the present paper. 
From the point of view of accuracy, the robust USV 
heading estimation based on the WIKF means that 
the horizontal coil readings are more accurately 
projected onto the global reference frame. By pro-
viding only those coil readings that are actually 
meaningful to the BPF algorithm, it is able to con-
verge more rapidly and reliably. 

The method proposed here does not replicate 
the cable localisation method carried out from a 
manned boat, but improves on its effectiveness, 
reducing time and costs, and of course, without the 
safety concerns of manned operation. In the simu-
lation shown here, the USV was able to track the cable 
even though the initial assumption of the source 
was over 20m away from the true source, and the ini-
tial assumed cable direction was over 10 degrees off. 
A limitation to the approach described here is the 
assumption that the object being tracked does not 
contain pronounced curvatures, since the projected 
crossover lines are assumed to be perpendicular to 

the cable based on a priori estimates of the cable’s 
direction. Nevertheless, this assumption is mostly 
true for cables and pipelines. 

It is envisaged to test this approach in a real cable-
tracking mission off the Cornish coast in the south-
west of England. Furthermore, the method will be 
extended for the localisation of small ferromagnetic 
objects, for which MFs will be generated from eddy 
currents induced by alternating MFs of the search-
ing coils themselves. The resulting induced MF dis-
tribution of smaller objects will be shaped in the 
form of a single peak above the object, for which 
different path planning routines will need to be 
developed, as well as the necessary intelligent dis-
crimination methods to identify the type of object 
localised.
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