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OpenFOAM Finite Volume Method Implementation of a Fully Nonlinear
Potential Flow Model for Simulating Wave-Structure Interactions

Arshad Mehmood a,∗, David I. Graham a, Kurt Langfeld a, and Deborah M. Greaves b

a School of Computing and Mathematics, Plymouth University, Plymouth, UK
b School of Marine Science and Engineering, Plymouth University, Plymouth, UK

ABSTRACT
We develop an interface-tracking algorithm to solve
the two-dimensional time dependent free surface
flows using a finite volume method with full non-
linear free surface boundary conditions and mov-
ing grids. The velocity potential is obtained in-
side the fluid domain by solving a mixed bound-
ary value problem. The velocity is then calculated
by the gradient of the velocity potential. The mo-
tion of the free surface is captured by integrating
in time the kinematic boundary condition, which
is based on the free surface volume flux. In the
implemented scheme, the free surface is allowed to
deform and a new mesh is generated at each time
step. The basis of this model is the freely available
open-source computational fluid dynamic toolbox
OpenFOAM R©). We examine the spatial and tem-
poral convergence of the scheme. We also compare
wave periods and evolution of wave amplitudes for
a range of wave conditions with the analytical solu-
tions, and a good agreement is found. The solver is
intended to be a first step towards an advanced nu-
merical wave tank solving both incompressible and
compressible flows interacting with structures un-
dergoing large body motions.

KEY WORDS: Finite volume method; nonlinear
full potential flow solver; dynamic mesh; interface-
tracking algorithm.

1 INTRODUCTION
Numerical modeling of free surface water waves typi-

cally uses two distinct approaches namely “surface cap-

turing” (Jacobsen et al. (2011)) and “surface tracking”

(Greaves et al. (1997); Wu and Taylor (1994); Ma et al.

∗arshad.mehmood@plymouth.ac.uk

(2001a); Santos and Greaves (2007)). Surface captur-

ing approaches include “volume of fluid” and “level set”

methods. In these methods a scalar function is used to

determine the location of the interface between the two

fluids (air and water). The scalar function is traced by

solving an additional scalar transport equation. The ad-

vantages of these methods include modeling of complex

flow phenomena such as wave breaking, overtopping, and

cavitation without any further modifications to the base

algorithm. However, the interface between the two fluids

is not precise (Floryan and Rasmussen (1989)), since the

scalar field diffuses close to the interface. Moreover this

approach also requires the solution of at least two flu-

ids resulting in higher computational cost. On the other

hand surface tracking methods (Greaves et al. (1997); Wu

and Taylor (1994); Ma et al. (2001a); Santos and Greaves

(2007)) are generally based on boundary-fitted grids that

move and deform as the solution advances in time. The

advantages of this approach includes accurately determin-

ing the free surface profile and moreover this approach

requires the solution of only one fluid resulting in low

computational cost.

Both these approaches are further subdivided into two:

Navier-Stokes or Euler equations solutions; or the hy-

pothesis of irrotational flow leading to potential flow so-

lutions. Significant progress has been made employing

both scenarios in order to explore the physics of vari-

ous kinds of waves. Mayer et al. (1998) and Muzafer-

ija and Peric (2007) numerically captured the nonlinear

free surface waves for full flow conditions using the fi-

nite volume method. The governing field equations were

the incompressible Navier-Stokes equations. The position

and shape of the free surface was determined by integrat-

ing the kinematic boundary condition. A detailed review

about the developments for the modeling moving bound-

ary problems for the Navier-Stokes equations was given by

Floryan and Rasmussen (1989). They discussed the base

methods like Eulerian, Lagrangian, and mixed (Eulerian-

Lagrangian). Moreover, they also analysed utilization of
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moving grids, adaptive grids, grids of variable topology

and connectivity.

For an irrotational flow, various methods have been

applied to capture the free surface profile accurately and

with less computational cost. Wu and Taylor (1994) nu-

merically simulated two-dimensional free surface waves

using two different finite element approaches. In the first

one, velocity potential was considered as the only un-

known, and in the second both the velocity potential and

the flow velocities were treated as unknowns and were

solved together. Ma et al. (2001a) developed a numerical

methodology also using the finite element technique to

capture the three dimensional interaction between waves

and stationary rigid bodies. They also applied a recovery

technique to improve the accuracy of the solution without

additional computational cost. They developed a radia-

tion condition which was based on the combination of

a damping zone and the Sommerfeld condition, to mini-

mize effectively the effect of the reflected waves from the

rigid boundaries. Santos and Greaves (2007) using a fi-

nite difference method captured the irrotational nonlinear

free surface water waves. They applied the Lagrangian-

Eulerian approach where the interior of the fluid domain

was discretized using an Eulerian quadtree grid, whilst

the free surface was tracked using a Lagrangian approach.

The coupling between the Lagrangian particles on the free

surface and the interior of the fluid domain was achieved

by computing the normal and tangential components of

the free surface velocities.

In this paper, following the irrotational flow assump-

tion, we describe a moving boundary finite volume formu-

lation for two-dimensional fully nonlinear time-dependent

free surface waves. The governing equation is Laplace’s

equation written in terms of the velocity potential.

We apply Neumann type boundary conditions on rigid

boundaries and kinematic and dynamic boundary condi-

tions on the free surface. In the implemented scheme, the

free surface is allowed to deform and a new mesh is created

at each time step. The basis of this model is the freely

available open-source computational fluid dynamic tool-

box OpenFoam R©, which is distributed by OpenCFD R©.

However, modeling of the nonlinear free surface waves

which satisfies the Laplace’s of the velocity potential in-

side the fluid domain with the inclusion of kinematic and

dynamic boundary conditions were not part of the stan-

dard distribution. OpenFOAM R© uses a finite volume

discretisation approach on unstructured meshes consist-

ing of arbitrary convex polyhedrals. For a full description

of space and time integration schemes in OpenFOAM R©,

readers are referred to (Jasak (1996)). The paper is orga-

nized as follows. In Section 2, we discuss the mathemat-

ical formulation of the scheme. In Section 3, we discuss

the obtained numerical results. Conclusions are presented

in Section 4.

2 MATHEMATICAL FOR-
MULATION

The flow is assumed to be incompressible, inviscid, and

irrotational. The governing equation of the fluid flow is

given by:

∇2φ = 0, (1)

where φ represents the velocity potential. A Cartesian

coordinate system is employed to simulate the flow field

with y directed vertically upward and the origin located

at the mean water level as shown in Fig. 1. All the field

variables are defined at cell centres. We compute the fluid

velocities by its gradient, u = ∇φ. On all rigid surfaces,

the Neumann type boundary condition is applied. At the

free surface, the dynamic and the kinematic boundary

conditions are imposed and are given as:

∂φ

∂t
= −gζ − 1

2∇φ.∇φ, (2)

∂ζ

∂t
= ∂φ

∂y
− ∂φ

∂x

∂ζ

∂x
, (3)

where ζ is the free surface position, g is the acceleration

due to gravity, ∇ is the gradient operator vector and t
is time. The kinematic boundary condition based on the

volume flux can be written as (Mayer et al. (1998),

∂ζ

∂t
= Uf

dA
.n, (4)

where Uf is the volume flux, dA is the cell face area and

n is the unit normal out of the flow domain.

Eq. 4 expresses the temporal change of the free-surface

geometry based on the volume flux. The mesh is updated

based on the new position of the free surface geometry.

Then Eq. 2 is evaluated to give the updated velocity po-

tential for the next time step. Note that in OpenFOAM,

the flow variables are defined at the cell centre and the

fluxes are computed at the face centres. Moreover, the

boundary conditions are defined at the face centre. How-

ever, the free-surface geometry must be specified at cell

vertex points when used for the grid generation. There-

fore, we interpolate the flux values from the face centre to

the cell vertices and integrate the values according to Eq.

4. Moreover, to apply the dynamic boundary condition,

we interpolate back the cell displacement ζ to the face
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centre. Furthermore, the velocities are not defined at cell

face boundaries, they are only defined at cell centres, we

therefore extrapolate the velocities using first-order ex-

trapolation to the face centre. The dynamic boundary

condition is then solved to give the velocity potential on

the free surface for the next time step.

x

y

H

Domian

Fig. 1 A 2-D layout of the domain.

2.1 Sequence of Solution Procedure
The sequence followed for integrating the system of fluid

motion and free surface from time step tn to tn+1 is as

follows.

1. Generate the grid.

2. Read/create all the fields (e.g velocity potential and

surface elevation ζ).

3. Apply the boundary conditions.

4. Solve Laplace’s equation for the velocity potential

φ.

5. Compute the required variables (i.e, velocities ui,

fluxes Uf ).

6. Solve the kinematic boundary condition using Eq.

4, yielding new free surface geometry.

7. Update the grid based on the surface elevation com-

puted in the previous step (step 6).

8. Compute the dynamic boundary condition using Eq.

2.

9. Repeat the procedure (step 4-8) to march in time.

3 RESULTS and DISCUS-
SION

3.1 Spatial and Temporal Conver-
gence

We consider various cases of standing waves and compare

the numerical simulation results with the analytical so-

lution. The standing waves are generated by setting the

initial shape of the free surface defined by a sinusoidal

function, ζ = a sin(kx) where k is the wave number

and x is measured along the length of the tank (Santos

and Greaves (2007)) as shown in Fig. 2. We use a Crank-

Nicolson method for the time integration of the kinematic

and dynamic boundary conditions in all the simulations.

For grid convergence, we simulated a sinsoidal wave of

amplitude a = 0.01 m, wavelength λ = 1.0 m and a

mean water depth of H = 0.8 m on a series of regular

grids as tabulated in table 1 using a dimensional time step

∆t = 0.005 s. The error is plotted against the number

of grid points along the x-direction on a log log scale as

shown in Fig. 3. The error is calcuated from the absolute

difference between the analytical solutions and the calcu-

lated values of wave elevation measured at the centre of

the domain. We note from this plot that error decreases

as the number of grid points are increased; showing first

order accuracy as expected. To optimize the simulations

in terms of the computational cost, Grid-4 is used with

∆t = 0.005 s for the remaining simulations, unless stated

otherwise.

H

Initial wave profile
wave amplitude

Fig. 2 Initial profile of the standing wave.

We also carried out the time discretisation study. For

that purpose we consider Grid-4 having 49 grid points

along the x-direction and 39 grid points along the y-

direction. A sinosoidal wave of amplitude a=0.01 m,
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Table 1 Mesh details and the error calculated.

Cases Grid size
Grid-1 13 x 11 x 1
Grid-2 20 x 17 x 1
Grid-3 33 x 26 x 1
Grid-4 49 x 39 x 1
Grid-5 75 x 59 x 1
Grid-6 113 x 89 x 1
Grid-7 169 x 134 x 1
Grid-8 211 x 167 x 1
Grid-9 253 x 201 x 1

10
1

10
2

10
3

10
−7

10
−6

10
−5

10
−4

10
−3

n
x

E
rr

o
r 

[m
]

Fig. 3 Calculated error vs number of grid points along
x-direction.

λ = 1.0 m was simulated. The mean water depth was

set to H=0.8 m. The simulations were carried out for

time steps ∆t = 0.025, ∆t = 0.0125, ∆t = 0.00625,

∆t = 0.003125. Fig. 4 shows the L1-error against the

time steps. This plot shows the decrease in error with the

decrease in time step size; showing satisfactory temporal

convergence.

3.2 Wave Period Comparison
In this section, we compare the wave period obtained for

different cases ranging from shallow water to deep water

and compare with the wave period obtained from 2nd-

order Airy wave theory. We consider two different wave

amplitudes a = 0.005 m and 0.01 m where the wave-

length is set to λ = 1.0 m. We vary the mean water

depth with small increments. The obtained wave periods

from the current simulations are plotted against the mean

water depth as shown in Fig. 5 along with the analytical

values. The numerical wave period was obtained from the

difference of the first two consecutive crests of the wave
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Fig. 4 variation of error estime with time step ∆t.

elevation time trace. The analytical wave period based on

2nd-order Airy wave theory was calculated according to

the dispersion relation T = 2∗π√
((g∗k∗tanh(k∗H)))

where

k is the wave number and g is the gravitational accel-

eration. This plot shows that the obtained wave period

from the current numerical scheme agrees very well to

that predicted by 2nd order Airy wave theory.
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Airy 2nd−order

ampl−005

ampl−01

Fig. 5 Variation of wave period against mean water
depth normalized by wavelength λ.

3.3 Small and Large Amplitude
Waves Comparison with Analyt-
ical Solutions

In this section, we compare the time history of the wave

elevation with the analytical solutions for low and rela-

tively large amplitudes. Firstly, we simulated low ampli-
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tude waves where the effect of nonlinear terms appear-

ing in the dynamic boundary condition can be neglected.

As a result, the simulation results can be compared with

those predicted by linear anlaytical solutions. For that

purpose, we consider standing sinusoidal waves with am-

plitudes a = 0.005 m and a = 0.01 m, wavelength λ = 1
m and mean water depth H = 0.8 m. The time traces of

the free surface elevation calculated at the centre of the

tank for both wave amplitudes are shown in Fig. 6. This

plot shows good agreement with the linear analytical so-

lution for both amplitudes. The calculated error for wave

amplitudes a = 0.01 m only is also plotted as shown in

Fig. 7 . Qualitatively the same pattern of the error was

found for wave amplitude a = 0.005 m. It can be noted

from this plot that error grows with time. In fact the

error growth is purely due to the difference between the

frequency of the analytical solution and that found in the

numerical solution. We note that the wave amplitude is

well predicted, and when we multiply the wave frequency

with a factor very close to 1, in this particular case the

factor was 0.998, the error does not grow and remians

very low as shown by black solid line in Fig. 7. It is im-

portant to note that this phase difference reduces as the

grid is refined.
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Analtic (linear)−0.005 m

Numerical−0.005 m

Analtic (linear)−0.01 m

Numerical−0.01 m

Fig. 6 Time history of free surface elevation at the centre
of the domain where H = 0.8 m and λ = 1 m.

We also compare the results obtained for a relatively

large amplitude. As the wave amplitude increases, the

velocities at the free surface appearing in the boundary

conditions become significant. Since their product brings

nonlinearity to the solution, their accurate calculation is

necessary. Moreover, the velocities are not computed at

the free surface but they are interpolated from the cell

centre. We need a much finer grid close to the free sur-

face. For that purpose, we use a graded grid of Grid-
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Fig. 7 Time history of the error when a = 0.01 m, H =
0.8 m and λ = 1 m.

4 which make a finer grid close to the free surface and

a comparatively coarser grid away from the free surface

without adding any computational expense. We consider

a standing sinusoidal wave with amplitudes a = 0.03 m,

wavelength λ = 1 m and mean water depth H = 0.8
m. The time trace of the wave elevation measured at the

centre of the domain is shown in Fig. 8. The 2nd-order

Airy solution was plotted based on the following relation

Cozzi (2010)

ζ(x, t) =a cos(kx) cos(ωt)+
πa2

λ
[cos2(ωt)− 1

4 cosh2(kH)
+

3
4 sinh2(kH)

cos(2ωt)] cos(2kx), (5)

This plot shows qualitatively good agreement with the

2nd-order Airy wave solution and also showing sharper

crests and higher harmonics, the phenomenon also ob-

served by (Ma et al. (2001b); Santos and Greaves (2007)).

The current nonlinear full potential flow (NLFP) solver

has been developed in OpenFOAM environment. Possi-

ble advantages include utilization of their built-in utili-

ties including parallelization, various time and spatial dis-

cretisation schemes, meshing types, mesh motion solvers,

selection of different waves. Moreover, OpenFOAM has

already built-in incompressible and compressible Navier-

Stokes (NS) solvers where the ultimate goal is to cou-

ple the NLFP with incompressible and compressible NS

solvers through a proper boundary condition that will en-

able simulations of the full range of wave conditions.
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Fig. 8 Time history of free surface elevation at the centre
of the domain where a = 0.03 m, H = 0.8 m and λ = 1
m.

4 CONCLUSIONS
The two-dimensional nonlinear transient free surface flow

problem has been solved using the finite volume method.

The method have been used to simulate various kinds of

standing waves in a rectangular tank. We have found

good spatial and temporal convergence of the solver.

Also, the wave period as predicted by 2nd-order Airy wave

theory for a range of scenarios ranging from shallow water

to deep water was well captured by the current scheme.

Excellent agreement with the analytical solutions for dif-

ferent wave amplitudes show successful implementation

of the kinematic and dynamic boundary conditions in

the OpenFOAM. The success of the method suggests that

this approach can be easily extended to three-dimensional

nonlinear free surface waves.

The developed solver and the associated kinematic and

dynamic boundary conditions will be released as an open-

source for the marine and offshore community.
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