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A B S T R A C T

In this manuscript we investigate the Benjamin–Feir (or modulation) instability for the spatial
evolution of water waves from the perspective of the discrete, spatial Zakharov equation, which
captures cubically nonlinear and resonant wave interactions in deep water without restrictions
on spectral bandwidth. Spatial evolution, with measurements at discrete locations, is pertinent
for laboratory hydrodynamic experiments, such as in wave flumes, which rely on time-series
measurements at fixed gauges installed along the facility. This setting is likewise appropriate for
experiments in electromagnetic and plasma waves. Through a reformulation of the problem for a
degenerate quartet, we bring to bear techniques of phase-plane analysis which elucidate the full
dynamics without recourse to linear stability analysis. In particular we find hitherto unexplored
breather solutions and discuss the optimal transfer of energy from carrier to sidebands. We show
that the maximal energy transfer consistently occurs for smaller side-band separation than the
fastest linear growth rate. Finally, we discuss the observability of such discrete solutions in light
of numerical simulations.

. Introduction

The Benjamin–Feir (or modulation) instability of waves in deep water is one of the most prominent discoveries of nonlinear
cience during the 20th century. The fact that monochromatic waves distort while propagating in the laboratory, and that the growth
f these disturbances can be attributed to fundamental energy transfers which impact our ability to forecast waves or understand
xtreme events continues to be a source of fascination to this day.

The potential flow problem with free surface which describes water wave propagation is nonlinear due to the surface boundary
onditions. To deal with this formidable problem, the investigation of the instability of a monochromatic wave train by Benjamin
Feir [1] employed perturbation theory in the spirit of G. G. Stokes, who pioneered its use in hydrodynamics more than a century

arlier. When the problem is linearised, periodic, travelling waves consisting of a single Fourier harmonic are easily found. From
he second order in the perturbation expansion these waves change shape due to the addition of bound harmonic terms, and at third
rder they undergo a first dispersion correction, such that their frequency depends on their amplitude. These changes were known
o Stokes by the mid 19th century.

What Stokes could not anticipate was how the dynamics would change if more than one Fourier harmonic were present in the
owest order solution. Indeed, the fact that the onerous perturbation expansions involved might yield something worthwhile became
pparent only with Phillips’ [2] discovery of a mechanism for resonant energy exchange among water waves at third order. This
ave the impetus to explore the problem more deeply, introducing initially small superharmonic and subharmonic perturbations
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into the water wave problem, and culminating in the work of Benjamin & Feir. Simultaneously with these developments, efforts
were underway to develop compact model equations for the nonlinear evolution of perturbed wave trains.

In water waves this resulted in the groundbreaking 1968 paper of Vladimir Zakharov [3], wherein a Hamiltonian formulation
f the water wave problem was determined for the first time. In the same work this novel formulation was used to derive a
onlinear Schrödinger equation (NLS) in the context of hydrodynamics, which was then employed to analyse the linear stability
f uniform wave trains. The NLS is in fact a type of universal equation for the slow variation of wave envelopes, as previously
hown by Benney & Newell [4]. A linear stability analysis based on such a model equation had previously been employed by
ogoliubov [5] in understanding the elementary excitations of a Bose–Einstein condensate, and by Bespalov & Talanov [6] for
onlinear electromagnetic waves.

These analyses, starting from the Gross–Pitaevski or nonlinear Schrödinger equations, allow for the study of small perturbations
modulations – of a plane wave solution. This is effectively a Fourier mode truncation, whereby the partial differential equation

s reduced to a system of coupled ordinary differential equations which are linearised to obtain a threshold for stability. The initial
xponential growth soon renders the linearisation invalid, and understanding the subsequent behaviour requires new methods.
ne natural avenue of progress was numerical investigation, although this comes with its own pitfalls, see, for example, Ablowitz
Herbst [7]. As numerical solutions require the fine-tuning of initial conditions and inevitably involve computations with finite

ccuracy, the complementary route of seeking exact solutions came to play a significant role. From the point of view of the nonlinear
chrödinger equation, the most remarkable exact solutions are the breathers found by Kuznetsov [8] and Ma [9], Akhmediev
t al. [10] and Peregrine [11]. These solutions represent the reversible amplification of disturbances from a background state into
spatially, temporally or spatiotemporally-localised coherent structure, and have been the subject of intense interest since their

iscovery.
Another line of inquiry, led initially by the Fluid Mechanics Department at TRW Defense and Space System and collaborators, and

eviewed in Yuen & Lake [12], sought to explore the modulation instability using relaxed assumptions. In particular, an intermediate
esult in Zakharov’s seminal 1968 paper [3] – namely a reduced form of the Hamiltonian equation which retains only resonant
ontributions – provided a window into the instability without the narrow-bandwidth restrictions imposed by the NLS formulation.
mploying this equation, which became known as the Zakharov equation, Crawford et al. [13] gave improved linear stability bounds,
nd contributed to a profusion of interest in modulation instability with broader bandwidth [14,15]. This reduced Hamiltonian
quation has, in fact, a rather generic form [16]: for a dispersion law which permits four wave resonances but not three wave
esonances, the particular physics of the problem are contained only in the corresponding integral kernel. In the context of water
aves, the correct Hamiltonian form of this kernel was given by Krasitskii [17]. Analogous reduced Hamiltonians can be found, for
xample, for Langmuir waves in plasma or optical waves described by the Maxwell equation [18].

Historically, most approaches to the problem of modulation instability and its consequences focus on equations written in terms of
emporal evolution. While this is natural mathematically, as it is common to initiate the dynamics from initial conditions, it does not
orrespond to the typical experimental set-up in hydrodynamics, where time-series of surface wave evolution are measured along the
ank by means of wave gauges placed at fixed spatial locations, i.e., the wave dynamics are initiated through boundary conditions.
his calls for a suitable spatial evolution equation, either in the form of the NLS [19] or a spatial Zakharov equation [20]. The latter
quation, derived by Shemer and co-workers in the early 2000s, has been used for a small handful of studies (e.g. [21,22]), but its
onsequences for the Benjamin–Feir instability have barely been explored (one notable exception is Shemer & Chernyshova [23]).

Our objective is to employ the spatial Zakharov formulation, which arises from the cubically nonlinear problem but otherwise
akes no assumptions about spectral bandwidth, to understand the entire spatial evolution of modulation instability. Exactly as

n studies of the instability threshold using NLS we shall begin by truncating our system to three interacting Fourier modes. In
ontrast to the classical approach, we find a subsequent linearisation to be superfluous: the resulting system can be recast as a
lanar Hamiltonian dynamical system, whose dynamics can be analysed by studying fixed points, separatrices, and bifurcations.
his dynamical system naturally encompasses the bi-modal spectrum [23], which is in fact the natural counterpoint of the classical
enjamin–Feir instability.

Our approach provides analytical insight into new solutions and associated novel physics of this spatial equation, including an
nalogue of the Kuznetsov–Ma breather solution. Moreover it shows a theoretical route towards optimal conversion of energy from
monochromatic to a bichromatic sea, or vice versa. We explore the stability of this optimal depletion solution to higher harmonics
oth analytically and numerically, in a complement to the phase plane analysis for the interacting degenerate quartet.

We now give an outline of the subsequent sections of this paper. In Section 2, we provide a description of the fundamentals
f the Zakharov equation. We show how it is discretised to a finite number of interacting waves which lays the groundwork for
ur analysis, before ending with a discussion of special cases, which admit closed form solutions. In Section 3, we build on these
undamentals discussed in Section 2 as we consider the degenerate quartet case of three distinct frequencies and reduce the Zakharov
quation to a discrete set of ODEs for the amplitude and phase of the interacting waves. By considering certain conserved quantities,
e can reduce the dynamics to a two dimensional dynamical system.

In Section 4 we discuss the various phenomena that result from three interacting waves. We first discuss the periodic behaviour
hich represents the generic, recurrent evolution of the Benjamin–Feir instability — also called Fermi-Pasta–Ulam–Tsingou

ecurrence. We then analyse the breather solutions present in our system, arising from both monochromatic and bichromatic
ackground states. We also discuss the issue of maximum energy transfer away from the carrier, which is found in a particular
reather solution. In Section 5, we discuss the observability of these wave phenomena when additional Fourier modes are present,
nd consider the implications for wave flume experiments. Finally, in Section 6, we conclude with a summary of our work as well
2

s suggestions for some avenues of future study.
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2. Fundamentals

Our starting point will be the spatial Zakharov equation developed in the early 2000s by Shemer et al. [20]. This is a modification
f the temporal evolution equation for nonlinear waves derived by Zakharov [3], and in Hamiltonian form by Krasitskii [17]. The
patial Zakharov equation has the form

𝑖𝑐𝑔
𝜕𝐵(𝑥, 𝜔)
𝜕𝑥

=∭ 𝑇 (𝑘, 𝑘1, 𝑘2, 𝑘3)𝐵∗(𝑥, 𝜔1)𝐵(𝑥, 𝜔2)𝐵(𝑥, 𝜔3)

⋅ exp(−𝑖(𝑘 + 𝑘1 − 𝑘2 − 𝑘3)𝑥)𝛿(𝜔 + 𝜔1 − 𝜔2 − 𝜔3)𝑑𝜔1𝑑𝜔2𝑑𝜔3. (1)

where 𝑐𝑔 denotes the deep water linear group velocity, 𝑘𝑖 is a scalar wavenumber, 𝜔𝑖 = 𝜔(𝑘𝑖) =
√

𝑔|𝑘𝑖| the linear dispersion relation
n deep water, and ∗ denotes the complex conjugate. By 𝛿 we denote the Dirac delta distribution and each integral is taken over
he real line. The complex amplitudes 𝐵 are related to the Fourier transforms of the free-surface elevation 𝜂 and the potential at the

free surface, which may be recovered from this formulation (see below). Full expressions for the kernel 𝑇 (𝑘, 𝑘1, 𝑘2, 𝑘3) are available
n [17]. We note only that this kernel has the following symmetries:

𝑇 (𝑖, 𝑗, 𝑘, 𝑙) = 𝑇 (𝑗, 𝑖, 𝑘, 𝑙) = 𝑇 (𝑖, 𝑗, 𝑙, 𝑘) = 𝑇 (𝑘, 𝑙, 𝑖, 𝑗).

t is common to write the wavenumber-dependence of the kernels as a subscript, and we shall employ the abbreviation 𝑇𝑗𝑙𝑚𝑛 for the
kernel 𝑇 (𝑘𝑗 , 𝑘𝑙 , 𝑘𝑚, 𝑘𝑛). Owing to the symmetries we will also denote 𝑇𝑗𝑗𝑗𝑗 = 𝑇𝑗 and 𝑇𝑖𝑗𝑖𝑗 = 𝑇𝑖𝑗 without risk of confusion.

Eq. (1) can be discretised as follows:

𝑖𝑐𝑔,𝑗
𝑑𝐵𝑗 (𝑥)
𝑑𝑥

=
∑

𝑙,𝑚,𝑛
𝑇𝑗𝑙𝑚𝑛𝐵

∗
𝑙 𝐵𝑚𝐵𝑛 exp(−𝑖𝛥

𝑚𝑛
𝑗𝑙 𝑥)𝛿(𝜔𝑗 + 𝜔𝑙 − 𝜔𝑚 − 𝜔𝑛), (2)

here 𝐵𝑖 = 𝐵(𝑥, 𝜔𝑖), and we denote by 𝛥𝑚𝑛𝑗𝑙 = 𝑘𝑗 + 𝑘𝑙 − 𝑘𝑚 − 𝑘𝑛 the wavenumber detuning, which measures departures from exact
esonance. In the discrete setting 𝛿(𝜔𝑗 + 𝜔𝑙 − 𝜔𝑚 − 𝜔𝑛) is a Kronecker delta function, which we will abbreviate with 𝛿𝑚𝑛𝑗𝑙 . We note

that such a discretisation is natural when considering mechanically generated waves in a flume, where a wavemaker driving signal
is synthesised from a finite number of frequencies, and an absorbing beach down–wave allows for the domain to be considered
semi-infinite.

While the temporal form of the Zakharov equation can be obtained by an expansion and truncation of the Hamiltonian
formulation of the water wave problem (more background can be found in the recent review [24]), the spatial equation is derived
directly from the temporal equation. The spatial Zakharov equation is a mother-equation of the spatial NLS and spatial Dysthe
equations, both of which can be derived from it in the limit of narrow bandwidth [25]. In a series of experiments spanning several
years and different facilities, Shemer and coworkers have verified the spatial equation for broad, Gaussian spectra [20], wave
groups [26] and bimodal spectra [23], underscoring its utility in modelling the evolution of experimentally generated waves in
a flume.

The relationship between the complex amplitudes and the free surface elevation is given (to lowest order) by

𝜂(𝑥, 𝑡) = 1
2𝜋 ∫

∞

−∞

(

𝜔
2𝑔

)1∕2
[

𝐵(𝑥, 𝜔) exp(𝑖(𝑘(𝜔)𝑥 − 𝜔𝑡)) + c.c.
]

𝑑𝜔. (3)

Here ‘‘c.c’’. stands for the complex conjugate of the preceding expression. In the discretised setting, the integral in (3) should be
replaced by a sum over the frequencies appearing.

2.1. Simple solutions of the discrete ZE

The spatial Zakharov Eq. (1) can be explicitly solved in some special cases, two of which are of particular interest for a study of
the Benjamin–Feir instability. We first consider the case of a single wave 𝜔0, such that the spatial Zakharov equation becomes

𝑖𝑐𝑔,0
𝑑𝐵0(𝑥)
𝑑𝑥

= 𝑇0|𝐵0(𝑥)|
2𝐵0(𝑥), (4)

which admits the constant amplitude solution

𝐵0(𝑥) = 𝐴0𝑒
−𝑖𝐴2

0𝑇0𝑥∕𝑐𝑔,0 . (5)

This is a monochromatic wave field with a nonlinear correction to the wavenumber, corresponding to the free mode part of the
well-known third-order Stokes’ wave solution. Inserting into (3) and using 𝑇𝑗 =

𝑘3𝑗
4𝜋2 it can be written as

𝜂(𝑥, 𝑡) = 𝑎0 cos(𝑘0[1 − 𝑎20𝑘
2
0]𝑥 − 𝜔0𝑡). (6)

where we have normalised the constant amplitude via

𝐴0 = 𝜋𝑎0

(

2𝑔
𝜔0

)1∕2
.

his is the exact counterpart of the temporal frequency correction found by Stokes, correct to third order in the wave steepness.
3
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The second simple case consists of two waves 𝜔𝑎 and 𝜔𝑏, resulting in a system of two equations

𝑖𝑐𝑔,𝑎
𝑑𝐵𝑎
𝑑𝑥

= 𝑇𝑎|𝐵𝑎|
2𝐵𝑎 + 2𝑇𝑎𝑏|𝐵𝑏|

2𝐵𝑎, (7a)

𝑖𝑐𝑔,𝑏
𝑑𝐵𝑏
𝑑𝑥

= 𝑇𝑏|𝐵𝑏|
2𝐵𝑏 + 2𝑇𝑎𝑏|𝐵𝑎|

2𝐵𝑏, (7b)

with solution

𝐵𝑎(𝑥) = 𝐴𝑎 exp(−𝑖(𝑇𝑎𝐴2
𝑎 + 2𝑇𝑎𝑏𝐴2

𝑏)𝑥∕𝑐𝑔,𝑎), (8a)

𝐵𝑏(𝑥) = 𝐴𝑏 exp(−𝑖(𝑇𝑏𝐴2
𝑏 + 2𝑇𝑎𝑏𝐴2

𝑎)𝑥∕𝑐𝑔,𝑏), (8b)

for 𝐴𝑎 and 𝐴𝑏 two constant amplitudes. The free surface is then a bichromatic (sometimes called bimodal) sea-state, written

𝜂(𝑥, 𝑡) = 𝑎𝑎 cos
(

𝑘𝑎
[

1 − 𝑎2𝑎𝑘
2
𝑎 − 2𝑎2𝑏𝑘

3∕2
𝑎 𝑘1∕2𝑏

]

𝑥 − 𝜔𝑎𝑡
)

+ 𝑎𝑏 cos
(

𝑘𝑏
[

1 − 𝑎2𝑏𝑘
2
𝑏 − 2𝑎2𝑎𝑘

3∕2
𝑎 𝑘1∕2𝑏

]

𝑥 − 𝜔𝑏𝑡
)

, (9)

where we take 𝑘𝑎 < 𝑘𝑏 to resolve the two-wavenumber kernels as 𝑇𝑎𝑏 = 𝑘2𝑎𝑘𝑏
4𝜋2 . This is the spatial counterpart of the solution found

using perturbation theory by Longuet-Higgins & Phillips [27], which can also be obtained from the temporal Zakharov equation
(cf. [28]).

3. Reformulation of the discrete ZE

As soon as more than two Fourier modes are involved the equations become more cumbersome. The principal reason is the
appearance of nontrivial interactions beyond the symmetric resonances encountered in Section 2.1. In particular, three modes may
interact to exchange energy if 2𝜔1 = 𝜔2 + 𝜔3. A description of the resulting interaction is significantly simplified by writing the
omplex amplitudes in terms of magnitude and phase, as has been suggested and carried out by Bretherton [29], Craik [30], Capellini

Trillo [31], Trillo & Wabnitz [32] (in the context of the NLS), and Andrade & Stuhlmeier [33,34] (for the temporal Zakharov
quation).

In the discrete spatial Zakharov Eq. (2) we write the complex amplitude 𝐵𝑗 (𝑥) as |𝐵𝑗 | exp(𝑖𝜙𝑗 ), where both magnitude and phase
ay depend on 𝑥. Separating into real and imaginary parts leads to:

𝑐𝑔,𝑗
𝑑|𝐵𝑗 |
𝑑𝑥

= −
∑

𝑙,𝑚,𝑛
𝑇𝑗𝑙𝑚𝑛𝛿

𝑚𝑛
𝑗𝑙 |𝐵𝑙‖𝐵𝑚‖𝐵𝑛| sin(𝛥

𝑚𝑛
𝑗𝑙 𝑥 + 𝜃𝑗𝑙𝑚𝑛), (10)

𝑐𝑔,𝑗 |𝐵𝑗 |
𝑑𝜙𝑗
𝑑𝑥

= −
∑

𝑙,𝑚,𝑛
𝑇𝑗𝑙𝑚𝑛𝛿

𝑚𝑛
𝑗𝑙 |𝐵𝑙‖𝐵𝑚‖𝐵𝑛| cos(𝛥

𝑚𝑛
𝑗𝑙 𝑥 + 𝜃𝑗𝑙𝑚𝑛), (11)

with

𝜃𝑗𝑙𝑚𝑛 = 𝜙𝑗 + 𝜙𝑙 − 𝜙𝑚 − 𝜙𝑛.

3.1. Reduction to a degenerate quartet

If we assume that the indices in Eqs. (10)–(11) take on values in the set {𝑎, 𝑏, 𝑐} only, with the proviso that

2𝜔𝑎 = 𝜔𝑏 + 𝜔𝑐 ,

o that the resonance condition imposed by the Kronecker delta 𝛿𝑚𝑛𝑗𝑙 is fulfilled, we obtain a set of six ODEs:

𝑐𝑔,𝑎|𝐵𝑎|
′ = −2𝑇𝑎𝑎𝑏𝑐 |𝐵𝑎||𝐵𝑏||𝐵𝑐 | sin(𝛥𝑏𝑐𝑎𝑎𝑥 + 𝜃𝑎𝑎𝑏𝑐 ) (12a)

𝑐𝑔,𝑏|𝐵𝑏|
′ = 𝑇𝑎𝑎𝑏𝑐 |𝐵𝑎|

2
|𝐵𝑐 | sin(𝛥𝑏𝑐𝑎𝑎𝑥 + 𝜃𝑎𝑎𝑏𝑐 ) (12b)

𝑐𝑔,𝑐 |𝐵𝑐 |
′ = 𝑇𝑎𝑎𝑏𝑐 |𝐵𝑎|

2
|𝐵𝑏| sin(𝛥𝑏𝑐𝑎𝑎𝑥 + 𝜃𝑎𝑎𝑏𝑐 ) (12c)

−𝑐𝑔,𝑎|𝐵𝑎|𝜙′
𝑎 = 𝛤𝑎 + 2𝑇𝑎𝑎𝑏𝑐 |𝐵𝑎||𝐵𝑏||𝐵𝑐 | cos(𝛥𝑏𝑐𝑎𝑎𝑥 + 𝜃𝑎𝑎𝑏𝑐 ) (12d)

−𝑐𝑔,𝑏|𝐵𝑏|𝜙′
𝑏 = 𝛤𝑏 + 𝑇𝑎𝑎𝑏𝑐 |𝐵𝑎|

2
|𝐵𝑐 | cos(𝛥𝑏𝑐𝑎𝑎𝑥 + 𝜃𝑎𝑎𝑏𝑐 ) (12e)

−𝑐𝑔,𝑐 |𝐵𝑐 |𝜙′
𝑐 = 𝛤𝑐 + 𝑇𝑎𝑎𝑏𝑐 |𝐵𝑎|

2
|𝐵𝑏| cos(𝛥𝑏𝑐𝑎𝑎𝑥 + 𝜃𝑎𝑎𝑏𝑐 ) (12f)

here we use ′ to denote the derivative in 𝑥 and abbreviate

𝛤𝑖 = |𝐵𝑖|
3𝑇𝑖 + 2

∑

𝑗≠𝑖
|𝐵𝑖||𝐵𝑗 |

2𝑇𝑖𝑗 . (13)

s we are restricted to this so-called degenerate quartet we shall henceforth drop the sub and superscripts on the detuning parameter
𝑏𝑐
4

𝑎𝑎 where there is no risk of confusion.
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A key observation is that the phases 𝜙𝑖 of the individual modes appear only in the single combination 𝛩 = 𝛥𝑥 + 𝜃𝑎𝑎𝑏𝑐 , which
we identify as the combined (or dynamic) phase variable of the problem. We write an evolution equation for this dynamic phase
variable [35,36] as

𝑑𝛩
𝑑𝑥

= 𝑑
𝑑𝑥

(

𝛥𝑥 + 𝜃𝑎𝑎𝑏𝑐
)

= 𝛥 + 2𝜙′
𝑎 − 𝜙

′
𝑏 − 𝜙

′
𝑐

= 𝛥 −
(

2𝛺𝑎
𝑐𝑔,𝑎

−
𝛺𝑏
𝑐𝑔,𝑏

−
𝛺𝑐
𝑐𝑔,𝑐

)

− 𝑇𝑎𝑎𝑏𝑐 cos(𝛩)

(

4|𝐵𝑏||𝐵𝑐 |
𝑐𝑔,𝑎

−
|𝐵𝑐 ||𝐵𝑎|

2

𝑐𝑔,𝑏|𝐵𝑏|
−

|𝐵𝑏||𝐵𝑎|
2

𝑐𝑔,𝑐 |𝐵𝑐 |

)

, (14)

where we define

𝛺𝑖 = 𝛤𝑖∕|𝐵𝑖| = |𝐵𝑖|
2𝑇𝑖 + 2

∑

𝑗≠𝑖
|𝐵𝑗 |

2𝑇𝑖𝑗 . (15)

Note that this differs from [34, Eq. (2.5)] in the signs of all terms except the first. This is due to the temporal Zakharov equation [34,
Eq. (2.1)] containing a term exp(𝑖𝛥𝑞𝑟𝑛𝑝𝑡) rather than the term exp(−𝑖𝛥𝑚𝑛𝑗𝑙 𝑥) found in (2). This is related to the fact that cubic nonlinearity
implies that steeper waves travel faster. In the temporal description (with fixed wavelength), this means the frequency increases
(see [28] for a discussion in the context of the temporal Zakharov equation); in contrast, in the spatial description (with fixed
frequency), this means that the wavenumber decreases, cf. (6) or (9).

We find that a quantity akin to wave action

𝑐𝑔,𝑎|𝐵𝑎|
2 + 𝑐𝑔,𝑏|𝐵𝑏|

2 + 𝑐𝑔,𝑐 |𝐵𝑐 |
2 = 𝐴 (16)

is conserved, as is the difference in side-band magnitudes

𝑐𝑔,𝑏|𝐵𝑏|
2 − 𝑐𝑔,𝑐 |𝐵𝑐 |

2 = 𝐴𝛼. (17)

In light of these conserved quantities, it is useful to reformulate our equations in terms of the squared magnitudes 𝐼𝑖 ∶= |𝐵𝑖|
2,

whereupon

𝑑
𝑑𝑥
𝐼𝑖 = 2

𝑑|𝐵𝑖|
𝑑𝑥

|𝐵𝑖|

and we obtain the three equations

𝐼 ′𝑎 =
−4𝑇𝑎𝑎𝑏𝑐
𝑐𝑔,𝑎

𝐼𝑎
√

𝐼𝑏𝐼𝑐 sin(𝛩), (18)

𝐼 ′𝑏 =
2𝑇𝑎𝑎𝑏𝑐
𝑐𝑔,𝑏

𝐼𝑎
√

𝐼𝑏𝐼𝑐 sin(𝛩), (19)

𝐼 ′𝑐 =
2𝑇𝑎𝑎𝑏𝑐
𝑐𝑔,𝑐

𝐼𝑎
√

𝐼𝑏𝐼𝑐 sin(𝛩). (20)

Making the substitution

𝐼𝑎 =
𝐴
𝑐𝑔,𝑎

𝜂, (21)

𝐼𝑏 =
𝐴

2𝑐𝑔,𝑏
(1 − 𝜂 + 𝛼), (22)

𝐼𝑐 =
𝐴

2𝑐𝑔,𝑐
(1 − 𝜂 − 𝛼). (23)

finally reduces the six coupled equations for the magnitudes and phases to a dynamical system involving two parameters 𝐴 and 𝛼 ∶

𝑑𝜂
𝑑𝑥

= −
2𝑇𝑎𝑎𝑏𝑐𝜂𝐴

√

(1 − 𝜂)2 − 𝛼2 sin(𝛩)
𝑐𝑔,𝑎

√

𝑐𝑔,𝑏𝑐𝑔,𝑐
, (24)

𝑑𝛩
𝑑𝑥

=
2𝐴𝑇𝑎𝑎𝑏𝑐 (𝛼2 − 2𝜂2 + 3𝜂 − 1) cos(𝛩)

𝑐𝑔,𝑎
√

𝑐𝑔,𝑏𝑐𝑔,𝑐
√

(1 − 𝜂)2 − 𝛼2
+ 𝐴𝜂𝛯1 + 𝐴𝛯0 + 𝛥, (25)

here

𝛯1 = −2
(

(

𝑇̃𝑎 − 2𝑇̃𝑎𝑏 +
1
4
𝑇̃𝑏
)

+
(

−2𝑇̃𝑎𝑐 + 𝑇̃𝑏𝑐
)

+
𝑇̃𝑐
4

)

, (26)

𝛯0 =

(

(1 + 𝛼)
(

−4𝑇̃𝑎𝑏 + 𝑇̃𝑏
)

+ 4
(

𝑇̃𝑎𝑐 (−1 + 𝛼) + 𝑇̃𝑏𝑐
)

− 𝑇̃𝑐 (−1 + 𝛼)
)

2
, (27)

and for compactness we write 𝑇̃ = 𝑇𝑎𝑎𝑏𝑐∕(𝑐𝑔,𝑎
√

𝑐𝑔,𝑏𝑐𝑔,𝑐 ), 𝑇̃𝑖𝑗 = 𝑇𝑖𝑗∕(𝑐𝑔,𝑖𝑐𝑔,𝑗 ) and 𝑇̃𝑖 = 𝑇𝑖∕𝑐2𝑔,𝑖. By straightforward integration we can see
that the system (24)–(25) has a Hamiltonian

𝐻 = 2𝐴𝑇̃ 𝜂
√

1 + 𝜂2 − 𝛼2 − 2𝜂 cos(𝛩) − 𝐴𝛯 𝜂2 − 𝐴𝛯 𝜂 − 𝛥𝜂, (28)
5
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such that
𝜕𝐻
𝜕𝛩

=
𝑑𝜂
𝑑𝑥
, 𝜕𝐻

𝜕𝜂
= −𝑑𝛩

𝑑𝑥
.

When the side-band energy is equally distributed and 𝛼 = 0 we find that (24)–(25) reduces to a considerably simpler system
𝑑𝜂
𝑑𝑥

= 𝛽2𝜂(𝜂 − 1) sin(𝛩), (29)
𝑑𝛩
𝑑𝑥

= 𝛽2(2𝜂 − 1) cos(𝛩) + 𝛽1𝜂 + 𝛽0, (30)

here

𝛽2 = 2𝐴𝑇̃ , (31)

𝛽1 = 𝐴

(

−𝑇̃𝑏 − 4𝑇̃𝑏𝑐 − 𝑇̃𝑐
)

+
(

8𝑇̃𝑎𝑏 + 8𝑇̃𝑎𝑐
)

− 4𝑇̃𝑎
2

, (32)

𝛽0 = 𝛥 + 𝐴

(

−4𝑇̃𝑎𝑏 + 𝑇̃𝑏
)

+
(

−4𝑇̃𝑎𝑐 + 4𝑇̃𝑏𝑐
)

+ 𝑇̃𝑐
2

. (33)

The Hamiltonian for 𝛼 = 0 is

𝐻(𝜂, 𝛩) = −𝛽2𝜂(𝜂 − 1) cos (𝛩) −
𝜂2

2
𝛽1 − 𝛽0𝜂. (34)

Despite the significant differences in the spatial and temporal formulations, this transformed, planar Hamiltonian is essentially
analogous to that found in the temporal case by Andrade & Stuhlmeier [34].

For the asymmetric Hamiltonian system (24)–(25) it is clear from the conservation laws (16)–(17) and the transformation (21)–
(23) that |𝛼| < 1 and thus 𝜂 ∈ [0, 1 − |𝛼|]. Taking, without loss of generality, 𝛼 positive, the phase space thus occupies the truncated
cylinder 𝐶 = {(𝛩, 𝜂) ∈ T × R ∶ −𝜋 ≤ 𝛩 ≤ 𝜋, 0 ≤ 𝜂 ≤ 1 − 𝛼}, the top of which (𝜂 = 1 − 𝛼) consists of modes 𝜔𝑎 and 𝜔𝑏 only, while
the bottom (𝜂 = 0) consists of modes 𝜔𝑏 and 𝜔𝑐 only. Thus, for nonzero 𝛼 there is no monochromatic configuration, instead both
boundaries of the phase space consist of bimodal seas.

By contrast, in the symmetric configuration 𝛼 = 0 the phase space is the truncated cylinder 𝐩 ∈ 𝐶 = {(𝛩, 𝜂) ∈ T × R ∶ −𝜋 ≤ 𝛩 ≤
𝜋, 0 ≤ 𝜂 ≤ 1}, whose top 𝜂 = 1 corresponds to monochromatic waves and whose bottom 𝜂 = 0 corresponds to bichromatic waves
(see Section 2.1) as can be seen immediately from (21)–(23). Points in the interior correspond to some mixing of three modes. The
symmetric side-band case 𝛼 = 0 is therefore of greatest interest — containing, as it does, the classical Benjamin–Feir instability, in
which a monochromatic wave is disturbed by two side-bands. For this reason we shall focus our investigation on 𝛼 = 0 only.

3.2. Phase-plane dynamics and fixed points

The fact that we have a planar Hamiltonian dynamical system means it is a simple matter to compute the trajectories, which
are simply the level curves of the Hamiltonian. The specification of a trajectory requires that we fix the Fourier modes under
consideration, which is done by selecting a central (or carrier) frequency 𝑓 (1/s) or 𝜔 (rad/s) and a mode separation parameter 𝑝
such that 𝜔𝑎 = 𝜔 = 2𝜋𝑓 , 𝜔𝑏 = 𝜔 − 𝑝 and 𝜔𝑐 = 𝜔 + 𝑝. In addition we must specify 𝐴 in some physically meaningful sense. This is
simplest if we employ the relations between the complex amplitudes 𝐵, the energy scale parameter 𝜂, and the free surface elevation
𝜂 in (3).

We write this correspondence for a single wave, which we can think of as classifying a phase portrait based on the monochromatic
carrier (6) which forms the top of the phase space. Substituting 𝜂 = 1 into (21)–(23) with 𝛼 = 0 shows 𝐴 = 𝑐𝑔,𝑎|𝐵𝑎|

2 and yields the
relation

𝐴 =
𝑎2𝑎𝜋

2𝑔
𝑘𝑎

=
𝜖2𝑎𝜋

2𝑔
𝑘3𝑎

, (35)

where 𝑎𝑎 is the physical amplitude of the carrier wave, and 𝜖𝑎 = 𝑎𝑎𝑘𝑎 is the wave steepness.
The dynamics in the phase space are governed by fixed points and associated separatrices, which are depicted as black circles

and dashed curves in Fig. 1. By setting the right-hand side of (29)–(30) equal to zero we can find expressions for the fixed points
of the system.

𝐩1 =
(

0,
𝛽2 − 𝛽0
2𝛽2 + 𝛽1

)

, (36)

𝐩2 =
(

±𝜋,
𝛽0 + 𝛽2
2𝛽2 − 𝛽1

)

, (37)

𝐩3,4 =
(

𝛩1, 0
)

, (38)

𝐩5,6 =
(

𝛩2, 1
)

, (39)

with 𝛩1 and 𝛩2 defined as the solutions to the trigonometric equations

cos(𝛩1) =
𝛽0 , (40)
6
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cos(𝛩2) = −
𝛽0 + 𝛽1
𝛽2

. (41)

We note that these fixed points must be either centres or saddle points. This follows immediately from considering the Jacobian
f the system (29)–(30):

𝐽 =
(

𝐻𝜂𝛩 𝐻𝛩𝛩
−𝐻𝜂𝜂 −𝐻𝜂𝛩

)

=
(

𝛽2(2𝜂 − 1) sin(𝛩) 𝛽2𝜂(𝜂 − 1) cos(𝛩)
2𝛽2 cos(𝛩) + 𝛽1 𝛽2(1 − 2𝜂) sin(𝛩)

)

,

which has vanishing trace, and determinant

det(𝐽 ) = 𝛽2𝜂(1 − 𝜂) cos(𝛩)
(

2𝛽2 cos(𝛩) + 𝛽1
)

− (1 − 2𝜂)2𝛽22 sin
2(𝛩).

e find that the existence of the 𝜂 = 1 fixed points depends on the condition

−1 ≤ −
𝛽0 + 𝛽1
𝛽2

≤ 1, (42)

which we may square to give

𝐷 =
(

𝛥 + 2|𝐵𝑎|
2
(

𝑇𝑎𝑏
𝑐𝑔,𝑏

+
𝑇𝑎𝑐
𝑐𝑔,𝑐

−
𝑇𝑎
𝑐𝑔,𝑎

))2
−

4𝑇 2
𝑎𝑎𝑏𝑐

𝑐𝑔,𝑏𝑐𝑔,𝑐
|𝐵𝑎|

4, (43)

uch that fixed points exist when 𝐷 ≥ 0. This is exactly the linear stability condition of the spatial Benjamin–Feir instability (see
lso Appendix A). Indeed, if fixed points exist at 𝜂 = 1 the eigenvalues of the Jacobi matrix – which satisfy 𝜆1,2 = ±

√

−det(𝐽 ) – are
real exactly when det(𝐽 ) is negative. It can be readily verified by substitution that at 𝜂 = 1

det(𝐽 ) =
(

𝛥 + 2𝐴
(

𝑇̃𝑎𝑏 + 𝑇̃𝑎𝑐 − 𝑇̃𝑎
))2 − 4𝐴2𝑇̃ 2

𝑎𝑎𝑏𝑐 .

Existence of 𝜂 = 0 fixed points (and so the instability of the underlying bichromatic sea) depends on the condition

−1 ≤
𝛽0
𝛽2

≤ 1,

which may be resolved (recalling that here 𝐴 = 𝑐𝑔,𝑏|𝐵𝑏|
2 + 𝑐𝑔,𝑐 |𝐵𝑐 |

2), after squaring, as
(

𝛥 +
𝑐𝑔,𝑏|𝐵𝑏|

2 + 𝑐𝑔,𝑐 |𝐵𝑐 |
2

2
[

𝑇̃𝑐 + 𝑇̃𝑏 − 4𝑇̃𝑎𝑏 + 4𝑇̃𝑏𝑐 − 4𝑇̃𝑎𝑐
]

)2

≤
4𝑇 2

𝑎𝑎𝑏𝑐 (𝑐𝑔,𝑏|𝐵𝑏|
2 + 𝑐𝑔,𝑐 |𝐵𝑐 |

2)2

𝑐2𝑔,𝑎𝑐𝑔,𝑏𝑐𝑔,𝑐
.

The regions of instability of the monochromatic waves (i.e. the spatial Benjamin–Feir instability) and bichromatic waves are
shown in Fig. 2 for fixed carrier frequency 𝑓 = 1 Hz. Fixed points appear on the top nullcline 𝜂 = 1 for values of carrier steepness 𝜖
and frequency separation 𝑝 within the coloured region shown in the left panel, and on the bottom nullcline 𝜂 = 0 as shown in the
ight panel. Colour denotes the linear growth rate of the unstable modes, with lighter yellow denoting higher growth rate.

. Dynamics of interacting waves

Even the relatively simple situation of three interacting waves contains a rich diversity of phenomena. These include periodic
rajectories as well as special cases such as the separatrices and interior fixed points.

.1. Periodic solutions

It is well known that the Benjamin–Feir instability can trigger a periodic near-recurrence, known as the Fermi–Pasta–Ulam–
singou recurrence [37–40]. This phenomenon, wherein energy transferred among Fourier modes leads to a recovery of the initial
ourier amplitudes instead of the expected thermalisation, surprised the scientific community and gave rise to new areas of research.
eing confined to three modes, we observe exact recurrence in both amplitudes and phases, which is termed Poincaré recurrence [12,
. 202]. Indeed, this periodic behaviour can be readily observed in our solutions. Fig. 3 shows such a solution from three vantage
oints. We consider a wave configuration with carrier frequency 𝑓 = 1 Hz and carrier steepness 𝜖 = 0.2. This fixes the total energy
f the system, but as yet any of the dynamics found in Fig. 1 are possible. We can fix a particular phase portrait by selecting the
ode separation 𝑝, which is chosen to be unity to yield a configuration where the carrier is unstable to disturbances.

We can select a particular trajectory in phase space by computing the Hamiltonian for given values of 𝜂 and 𝛩. In the lower left
anel of Fig. 3 the red curve is the contour for 𝜂 = 0.95 when 𝛩 = 0. This dynamic of periodic energy exchange is characterised by
eing confined within the separatrix (shown as a dashed curve connecting the two fixed points at (𝜂, 𝛩) = (1,±2.112)) surrounding the

centre point 𝐩1, shown as a circle at (𝜂, 𝛩) = (0.6330, 0) (see (36)), and the dynamic phase 𝛩 takes on values between approximately
1.5 and 1.5 only.

The dash-dotted curves show the nullclines of the system (29)–(30): clearly 𝜂′ vanishes only at the boundaries of the domain
nd the line 𝛩 = 0; 𝛩′ vanishes on the curve connecting the two fixed points at 𝜂 = 1. We observe that the maximum/minimum of

along our chosen trajectory (red curve), i.e. where the nullcline intersects the contour, coincides with the greatest change in 𝜂,
.e. a minimum/maximum in 𝜂′, and vice versa. We interpret this to mean that when the dynamic phase is stationary, the energy
xchange (governed by the rate of change of 𝜂) is greatest.
7
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Fig. 1. Phase portraits for (𝛩, 𝜂) for various values of the mode separation parameter 𝑝 with 𝑓 = 1 and 𝜖 = 0.2. Panels (a)–(f) show 𝑝 = 0, 0.6𝑝𝑐 , 𝑝𝑐 , 1.1𝑝𝑐 , 2𝑝𝑐
and 3𝑝𝑐 respectively for 𝑝𝑐 ≈ 0.5791. Fixed points of the dynamical system are denoted by black circles, separatrices are denoted by dashed curves connecting
pairs of fixed points.

Fig. 2. Plot in 𝜖, 𝑝 parameter space of the existence of fixed points (i.e. instability) at 𝜂 = 1 (monochromatic waves, left panel) and 𝜂 = 0 (bichromatic waves,
right panel). Colours denote the growth rate, calculated from the eigenvalues of the Jacobi matrix. The red curve shows the location in 𝜖, 𝑝 space of the maximum
depletion of the carrier, associated with the vertical separatrix shown in panel (c) of Fig. 1.

The trajectories shown in the bottom left panel are ‘‘unwrapped’’ in the lower right panel, which shows the individual Fourier
amplitudes |𝐵𝑖| as well as the dynamic phase as functions of 𝑥. The interplay between dynamic phase and Fourier amplitudes can
be clearly observed. Finally the free surface envelope |𝐴(𝑥, 𝑡)| is shown for one recurrence period (𝑥 ≈ 40 m) in the top panel of the
same figure.
8
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Fig. 3. Three views of a periodic solution: (top panel) free-surface envelope in space and time. (Bottom left) solution depicted in phase space (red curve).
(Bottom right) Fourier amplitudes |𝐵𝑖(𝑥)| and dynamic phase 𝛩(𝑥) plotted with distance 𝑥.

4.2. Breather solutions

In addition to the recurrent solutions, which are those usually encountered in numerical simulations, there are also solutions
with asymptotic behaviour. These solutions tend asymptotically to either the bichromatic or monochromatic wave field, and are
therefore termed breathers (in this context we usually speak of a mono/bichromatic background). We can look for breather solutions
of our equations by considering the orbits written in the form

𝑑𝜂
𝑑𝛩

=
𝛽2𝜂(𝜂 − 1) sin(𝛩)

𝛽0 + 𝛽1𝜂 + 𝛽2(2𝜂 − 1) cos(𝛩)
. (44)

This can be integrated explicitly, although it is advisable to simplify first. Solutions of interest are those for which 𝜂 → 1, 0 for
𝛩 → 𝛩∗, where 𝛩∗ is the dynamic phase corresponding to a fixed point on the boundary of the phase plane.

4.2.1. Breather solutions with monochromatic background
Looking for solutions with monochromatic background, i.e. separatrices which connect two fixed points at 𝜂 = 1, we find the

explicit expression

𝜂(𝛩) =
𝛽2 cos(𝛩) − (𝛽2 cos(𝛩) + 𝛽0 + 𝛽1) − 𝛽0

𝛽1 + 2𝛽2 cos(𝛩)
, (45)

which tends towards 1 as 𝛩 ⟶ 𝛩0, for

𝛩0 = arccos
(

−𝛽0 − 𝛽1
𝛽2

)

the dynamic phase of the fixed point. The differential equation governing 𝛩 can also be integrated, and the solution written as

tan
(𝛩
2

)

= sgn(sin(𝛩0)) tan
(

𝛩0
2

)

tanh
(

𝛽2
2
𝑥 sin(𝛩0)

)

. (46)

This breather solution corresponds to the class of separatrix found in panel (e) of Fig. 1. A depiction of the free surface envelope in
space and time is shown in Fig. 4. It should be noted that the envelope of a monochromatic wave field is a constant, as observed
for large values of |𝑥|. At the focusing location 𝑥 = 0 the breather is periodic in time, analogous to the well-known Kuznetsov–Ma
breather solution of the nonlinear Schrödinger equation.
9
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Fig. 4. The free surface envelope of a breather with monochromatic background, corresponding to 𝑓 = 1 Hz, 𝜖 = 0.2, and 𝑝 = 1.4. The focusing occurs at 𝑥 = 0,
which is the minimum of the energy scale parameter 𝜂 along the separatrix. As 𝑥 tends to ±∞, 𝜂 tends towards 1 and the wave field asymptotically becomes
monochromatic.

Fig. 5. The free surface envelope of a breather with bichromatic background, corresponding to 𝑓 = 1 Hz, 𝜖 = 0.2, and 𝑝 = 0.4. The focusing (in the form of a
‘‘demodulation’’) occurs at 𝑥 = 0, which is the maximum of the energy scale parameter 𝜂 along the separatrix. At this location 𝑥 = 0 the wave field is close to
monochromatic, as components 𝑏 and 𝑐 are very small. As 𝑥 tends to ±∞, 𝜂 tends towards 0 and the wave field asymptotically becomes bichromatic.

4.2.2. Breather solutions with bichromatic background
We may apply the same process to the 𝜂 = 0 fixed point, which has breathers associated with the separatrices shown in panels

(a) and (b) of Fig. 1. Using 𝐻 = 0 and simplifying Eq. (29), we find an exact solution 𝜂(𝛩) given by

𝜂(𝛩) =
𝛽0 − 𝛽2 cos(𝛩)

𝛽2(1 − cos(𝛩)) − 𝛽2 − 𝛽1∕2
, (47)

where it can be seen that 𝜂 → 0 as 𝛩 → 𝛩∗ where

𝛩∗ = arccos
(

𝛽0
𝛽2

)

. (48)

We can also solve explicitly the differential equation for 𝛩 which yields

tan
(𝛩
2

)

=
𝛽2

𝛽2 + 𝛽0
sin(𝛩∗) tanh

(

𝛽2
2

sin(𝛩∗)𝑥
)

. (49)

As above, the corresponding free surface envelope is shown in Fig. 5.

4.2.3. Breather solutions with maximum depletion
The most striking breather solution occurs when a separatrix connects a fixed point at the top of the phase space 𝜂 = 1 with a

fixed point at the bottom of the phase space 𝜂 = 0. For this breather solution to exist we require that the fixed points at 𝜂 = 0 and
10
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Fig. 6. The free surface envelope of a breather with maximal depletion, corresponding to 𝑓 = 1 Hz, 𝜖 = 0.2, and 𝑝 ≈ 0.5791. For 𝑥 → ∞ the wave field tends
towards a monochromatic state, while for 𝑥→ −∞ the wave tends towards the bichromatic state.

𝜂 = 1 have the same phase, which requires

𝛽0 = −
𝛽1
2
. (50)

Such separatrices are vertical orbits 𝛩 = 𝛩𝑐 , as shown in Panel (c) of Fig. 1. Consequently they are simple to obtain from the
dynamical system, since (29) decouples from (30), and can be immediately integrated as a separable ODE for 𝜂. The solution is

𝜂(𝑥) = 1
1 + 𝐶 exp(−𝛽2𝑥 sin(𝛩𝑐 ))

. (51)

For unidirectional waves as considered herein the coefficient 𝛽2 is strictly non-negative, so that the behaviour of the solution
as 𝑥 → ±∞ depends only on the sign of sin(𝛩𝑐 ). For symmetry, the constant of integration 𝐶 can be chosen as unity, such that
𝜂(0) = 1∕2 is centred in the phase space. The explicit formula for the optimal conversion breather (51) also allows us to calculate
analytically the evolution length.

The free surface envelope of this breather is shown in Fig. 6. This solution is particularly interesting, since it represents the
optimal conversion of energy (or transformation) from a monochromatic wave train to a bichromatic wave train (or vice versa).
Thus, while any instability of the monochromatic carrier (shown in the left panel of Fig. 2) gives rise to a breather of the type
discussed in Section 4.2.1, the optimal energy transfer is obtained for a unique value of mode separation for a given carrier steepness
— shown as the red curve in both panels of Fig. 2. In addition, the phases of the waves must be tuned in order to obtain this solution,
see panel (c) of Fig. 1. A key observation is that, for a given carrier, the maximal energy transfer occurs for much closer side-bands
(smaller 𝑝) than the fastest linear growth rate.

5. Observability of discrete wave interactions

A principal advantage of the spatial Zakharov equation over its better-known temporal sister equation is that it relates directly
to properties that can be measured in wave flume experiments. Analogous interaction equations can be used to describe other
nonlinear dispersive media, such as electromagnetic Kerr media [41,42]. A natural question therefore concerns the significance of
the three-mode truncation results for experimental work, in particular for optimising energy transfer between a carrier wave and
its side bands.

The two interactions that occur in our dynamical systems description of the Benjamin–Feir instability are transfers of energy
from one mode 𝜔 to two modes 𝜔±1 and vice versa. These are depicted schematically in Fig. 7. The principal energy exchange is
indicated by the blue arrows, moving either from one mode to two (left panel) or two modes to one (right panel). What occurs when
additional Fourier modes are incorporated? If these are equidistant modes 𝜔±2, 𝜔±3,… new energy exchanges become available, and
the possibility of spectral broadening appears. The most important interaction is with the superharmonics 𝜔+2 and 𝜔−2, which is
easily subsumed into the foregoing theory.

We will limit our discussion to two cases: the periodic recurrence discussed in Section 4.1 and the optimal energy conversion from
Section 4.2.3, and investigate whether these are robust from the expanded point of view which allows for higher harmonics. We shall
begin with the case of optimal energy conversion, which demonstrates a particular instability whereby small perturbations – with
specially tuned mode separation and phases – are able to asymptotically convert a monochromatic wave train into a bichromatic
state, or vice versa.

One problem is immediately evident from Fig. 1: given a carrier steepness and frequency, we find the optimal conversion for
a particular value of 𝑝 which we shall call 𝑝 (panel (c) Fig. 1). However the same carrier is also unstable to superharmonic
11
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Fig. 7. Instabilities of monochromatic and bichromatic waves shown embedded in a discrete spectrum, illustrating the possibilities for spectral broadening
through energy transfer. (Left panel) The Benjamin–Feir instability of a monochromatic wave 𝑓 (black arrow) transfers energy to 𝑓±1 (blue arrows), but may
continue to transfer energy to outlying modes 𝑓±2. (Right panel) The instability of a bichromatic wave train 𝑓±1 (black arrows) to monochromatic disturbances
transfers energy to 𝑓 (blue arrows), but may also transfer energy to outlying modes 𝑓±2 (red arrows).

Fig. 8. Instability domain and linear growth rates (colours) for a monochromatic wave field (as in Fig. 2), showing the optimal conversion breather (solid red
curve), largest growth rate (black curve), and twice the mode separation of both of the aforementioned (dashed red curve – breather superharmonic, dashed
black curve – largest growth rate superharmonic).

perturbations with 2𝑝𝑐 (panel (e) Fig. 1). Moreover, the growth rate of the superharmonics 2𝑝𝑐 is larger than that of the fundamental
𝑝𝑐 , as can be seen in Fig. 8. In fact, perturbations with 2𝑝𝑐 (dashed red curve) are very close to the curve of maximum growth rate
(black curve), and so will be preferentially amplified. This is precisely the scenario shown in the top panel of Fig. 9, which compares
the same initial conditions for a three-mode and a five-mode system.1

The foregoing discussion highlights some of the differences between a strict truncation and the subsequent evolution when more
modes are allowed into the interaction. The analogous arguments can be made for periodic recurrences, which exist alongside the
asymptotic solutions and fixed points. In Fig. 8 we note that the most unstable perturbation 𝑝max for a given carrier steepness 𝜖
(shown in the solid black curve) is not susceptible to superharmonic instabilities since the curve of 2𝑝max lies outside the instability
domain. Again, this fact is borne out by numerical simulations comparing the three–mode and five–mode system, as shown in the
bottom panel of Fig. 9.

It may seem initially surprising that the superharmonics 𝜔±2𝑝 oscillate despite being linearly stable. This can be seen from
linear stability analysis (see Appendix A), which shows that higher harmonics are entrained and grow linearly in concert with the
dominant unstable triad 𝜔, 𝜔±1. While the qualitative behaviour, and in particular the recurrent nature of the solution, is preserved
some quantitative differences do manifest, among these the aperiodicity of the five-mode solution. Another significant difference
is the extent to which the carrier (denoted |𝐵𝑎|) can deplete: in a case with more modes the cascade of energy from the carrier
into the sidebands and superharmonics leads to a greater depletion of the carrier amplitude itself — a process that is brought to its
apotheosis by Akhmediev or Kuznetsov–Ma breathers [8,43] (see Chin et al. [37]).

1 Tackling the same problem from the other side of the phase plane, and attempting to make a bichromatic into a monochromatic wave suffers from similar
problems. While 𝜔−1 may transfer energy to mode 𝜔0 in the desired interaction 𝜔−1 + 𝜔1 = 2𝜔0, it much prefers to transfer energy to both 𝜔0 and 𝜔−2 via the
equally accessible interaction 2𝜔 = 𝜔 + 𝜔 .
12
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Fig. 9. Numerical integration with 3 and 5 Fourier modes, with carrier wave 𝑓𝑎 = 1 Hz, 𝜖𝑎 = 0.2. (Top panel) Three–mode initial conditions corresponding to
he maximal energy transfer breather solution found in Section 4.2.3, with 𝑝 ≈ 0.5798. The three-mode system (solid curves) behaves as expected, with energy
ransferring asymptotically from 𝐵𝑎 to 𝐵𝑎+𝑝 and 𝐵𝑎−𝑝. The five-mode system (dashed curves) behaves analogously for short distances, but the fact that modes
𝑎± 2𝑝 are unstable gives rise to energy exchange and chaotisation of the trajectories. (Bottom panel) Three–mode initial conditions corresponding to the largest
linear growth rate with 𝑝 ≈ 1.1532. The three–mode system (solid curves) undergoes periodic energy exchange. As the higher harmonics are linearly stable these
do not participate in any significant energy exchange, but are entrained in the dynamics of the principal triad 𝑎, 𝑎 + 𝑝, 𝑎 − 𝑝..

6. Discussion

We have set out to examine the spatial Benjamin–Feir instability from the perspective of the spatial Zakharov equation. While the
temporal case has been studied very extensively, this physically important case has received much less attention. In order to employ
techniques of phase plane analysis we restrict ourselves to the three Fourier modes forming a degenerate quartet, the germ of the
Benjamin–Feir instability. With this restriction it is possible to describe the entire subsequent behaviour simply and analytically —
classifying the phase portraits, identifying separatrices with breathers and fixed points with steady-state solutions, see [44].

Two particularly important insights are obvious from our approach, but obscured by the classical treatment of linear stability
analysis and subsequent numerical integration. The first is that the largest (linear) growth rate does not correspond to the largest
energy exchange among the modes. This is clear from Fig. 2, where the latter is shown in the red curves, and is observed to
occur consistently for a smaller value of mode separation than the highest growth rate at equal carrier steepness. Just because the
disturbance grows the fastest does not mean that it grows the most.

A second key insight concerns the stability thresholds. Monochromatic and bichromatic waves are identified with the top and
bottom nullclines of our dynamical system, respectively, and their orbital stability is determined by the existence of fixed points
thereon. Indeed the existence criteria for such fixed points are identical to the linear stability thresholds. However, the phase portraits
(see Fig. 1, panel (f)) make clear that energy exchange persists outside this instability threshold, as 𝜂 changes along the trajectories.
Contrary to what one might expect from the linear analysis alone, even stable configurations generally exhibit oscillations between
the Fourier amplitudes.

Breathers are famed exact solutions of the nonlinear Schrödinger equation [10], and can be observed experimentally [45–47],
which raises the question whether they can appear in more general equations governing inviscid propagation of water waves. Early
13
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numerical simulations affirming this using the equations for potential flow were performed by Dyachenko & Zakharov [48]. A more
detailed study was undertaken by Slunyaev & Shrira [49] using numerical solutions of the Euler equation, who found that breathers
carefully initialised with NLS initial conditions could be propagated numerically without significant change. This is quite surprising
given the simple nature of the NLS and the numerous restrictions made in its derivation.

A natural question is whether breather solutions exist within the framework of the reduced Zakharov equation, which – while
imited to third order in nonlinearity – is at least free of the bandwidth restrictions which appear in the NLS. The answer to this
uestion is positive, although no explicit expressions comparable to those found by Akhmediev et al. [10] have been found. Using the
etviashvili method, pioneered in investigations of the so-called compact Dyachenko–Zakharov equation by Fedele & Dutykh [50],
achulin et al. [51] have successfully obtained a numerical breather solution of the spatial Zakharov equation.

As is the case for the Akhmediev breather solution of the NLS [37], this solution manifests the Benjamin–Feir instability and so
ust occur within the linear instability domain (see Fig. 2). However, its higher harmonics must be linearly stable, in order that

he energy transfer is reversible and the monochromatic background is obtained as 𝑥 → ±∞. In analogy with the situation found
in the NLS by Bendahmane et al. [52], it is likely that the largest realisable depletion of the carrier wave is to be found along this
breather trajectory.

Finding an explicit Kuznetsov–Ma type breather solution of the spatial Zakharov equation is not so straightforward due to the
high-dimensional phase-space involved. Such a solution, tending asymptotically to a fixed point on the submanifold consisting
of monochromatic waves would be a kind of coda to Section 5, presenting an exactly reversible cascade of energy to the
superharmonics. Evidently, finding an experimental setting where the distinct features of such a breather could be realised would
also be of great interest.
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Appendix A. Linear stability analysis for the spatial Zakharov equation

It may be surprising to find that, even when the modes 𝜔±2 are linearly stable, they nevertheless grow from zero. We can
ppreciate this fact by a closer look at the linear stability analysis of the discretised spatial Zakharov Eq. (2), which we write in
utonomous form using the transformation 𝐵𝑗 = 𝑏𝑗 exp(−𝑖𝑘𝑗𝑥) as

𝑖𝑐𝑔,𝑗𝑏
′
𝑗 (𝑥) = −

𝜔𝑗
2
𝑏𝑗 +

∑

𝑇𝑗𝑙𝑚𝑛𝑏
∗
𝑙 𝑏𝑚𝑏𝑛𝛿

𝑚𝑛
𝑗𝑙 . (A.1)

Note that 𝑘𝑗𝑐𝑔,𝑗 = 𝜔𝑗∕2.
If we initially assume that mode 𝑏0 ≫ 𝑏𝑖 for all 𝑖 ≠ 0, and we neglect products of small terms, we obtain the single equation

𝑖𝑐𝑔,0𝑏
′
0 = −

𝜔0
2
𝑏0 + 𝑇0,0|𝑏0|

2𝑏0 = 𝛺0𝑏0. (A.2)

where we write 𝛺𝑖 = −𝜔𝑖
2 + 𝑒𝑖𝑇0,𝑖|𝑏0|

2, where 𝑒𝑖 = 1 if 𝑖 = 0 and 𝑒𝑖 = 2 if 𝑖 ≠ 0. The solution to this equation is the Stokes’ wave (see
ection 2.1)
14
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Neglecting the second harmonics 𝑏±2 as small, and retaining only terms linear in 𝑏±1 we obtain the system of equations

𝑖𝑐𝑔,1𝑏
′
1 = 𝛺1𝑏1 + 𝑇−1,1,0,0𝑏∗−1𝑏

2
0, (A.3)

𝑖𝑐𝑔,−1𝑏
′
−1 = 𝛺−1𝑏−1 + 𝑇−1,1,0,0𝑏∗1𝑏

2
0. (A.4)

This is a linear system in the side-bands 𝑏±1, and can be solved by substituting the Ansatz

𝑏1 = 𝐴1 exp
(

𝑥
(

𝜎 − 𝑖
𝛺1
𝑐𝑔,1

− 𝑖
𝛽
2

))

,

𝑏−1 = 𝐴−1 exp
(

𝑥
(

𝜎∗ − 𝑖
𝛺−1
𝑐𝑔,−1

− 𝑖
𝛽
2

))

,

here 𝛽 = −𝛽0 − 𝛽1 = 2𝛺0∕𝑐𝑔,0 −𝛺1∕𝑐𝑔,1 −𝛺−1∕𝑐𝑔,−1. Substitution shows that this linear system has a solution when the determinant
of the coefficient matrix vanishes, precisely the condition (43) previously obtained from phase-plane analysis.

At the next order, assuming 𝑏±2 are small and retaining terms containing 𝑏0, 𝑏±1, one obtains the linear system

𝑖𝑐𝑔,2
𝑑𝑏2
𝑑𝑡

= 2𝑇−1,2,0,1𝑏∗−1𝑏0𝑏1 + 𝑇0,2,1,1𝑏
∗
0𝑏

2
1, (A.5)

𝑖𝑐𝑔,−2
𝑑𝑏−2
𝑑𝑡

= 2𝑇−2,1,−1,0𝑏∗1𝑏−1𝑏0 + 𝑇−2,0,−1,−1𝑏
∗
0𝑏

2
−1. (A.6)

These are forced equations for modes ±2, which show that these modes grow linearly due to the dominant interaction between the
carrier and the side-bands ±1.

Appendix B. Linear stability for spatial and temporal evolution in NLS and ZE

The purpose of this appendix is to provide a brief, simple introduction to the modulation instability of the spatial NLS equation,
and subsequently to compare the narrow-bandwidth NLS models (spatial and temporal) with the Zakharov equations from which
they are derived. This complements prior work on spatial vs. temporal NLS equations [19] [53], which focuses on comparison of
analytical breather and envelope soliton solutions.

We start with the spatial NLS equation in the form

𝜓𝑥 + 𝑖
𝑘𝑎
𝜔2
𝑎
𝜓𝑡𝑡 + 𝑖𝑘3𝑎|𝜓|

2𝜓 = 0. (B.1)

We can establish how side-band disturbances grow based on a three-mode truncation and linearisation. Abbreviating 𝑘𝑎∕𝜔𝑎 by 𝜆
and 𝑘3𝑎 by 𝜈, this is achieved by first separating the complex envelope amplitude into real and imaginary parts using the ansatz

𝜓(𝑥, 𝑡) = 𝑎(𝑥, 𝑡) exp(𝑖𝜒(𝑥, 𝑡))

for 𝑎, 𝜒 ∶ R × R → R, and subsequently separating into real and imaginary parts

𝑎𝑥 − 2𝜆𝑎𝑡𝜒𝑡 − 𝜆𝑎𝜒𝑡𝑡 = 0, (B.2)

𝑎𝜒𝑥 + 𝜆𝑎𝑡𝑡 − 𝜆𝑎(𝜒𝑡)2 + 𝜈𝑎3 = 0. (B.3)

In this system we now insert the perturbation ansatz

𝑎(𝑥, 𝑡) = 𝑎0 + 𝜖𝑏(𝑥, 𝑡), 𝜒(𝑥, 𝑡) = 𝜒0(𝑥) + 𝜖𝜃(𝑥, 𝑡).

Here we view 𝜖 as a small parameter, and see that the 𝑂(1) solution is simply the monochromatic (Stokes) wave solution with
𝜒0 = −𝑎20𝜈𝑥. The 𝑂(𝜖) system takes the form

𝑏𝑥 − 𝜆𝑎0𝜃𝑡𝑡 = 0, (B.4)

𝑎0𝜃𝑥 + 𝜆𝑏𝑡𝑡 + 2𝜈𝑎20𝑏 = 0. (B.5)

These yield either a single equation for the perturbation amplitude 𝑏 or the perturbation phase 𝜃. We write

𝑏𝑥𝑥 + 𝜆2𝑏𝑡𝑡𝑡𝑡 + 2𝜆𝜈𝑎20𝑏𝑡𝑡 = 0,

and seek a solution of the form 𝑏 = exp(𝑖(𝜅𝑥 − 𝑝𝜔𝑡)). Inserting the form of the variables 𝜆 and 𝜈 we obtain the growth rate 𝜅 as

𝜅2 = 𝑘2𝑎
𝑝2𝜔
𝜔2
𝑎

(

𝑝2𝜔
𝜔𝑎

− 2𝑘2𝑎𝑎
2
0

)

. (B.6)

Here 𝑝𝜔 is the frequency perturbation, and we identify 𝑎0 with the monochromatic wave amplitude, so that 𝑎0𝑘𝑎 = 𝜖, the wave
steepness.

When 𝜅2 < 0 we find that the perturbation amplitude grows exponentially, which establishes the linear instability condition

𝑝2𝜔 < 2𝜖2. (B.7)
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Fig. B.10. Spatial (panel (a)) and temporal (panel (b)) growth rates as a function of normalised perturbation for various values of carrier steepness 𝜖. Solid
lines show growth rates for the ZE/sZE, dashed those for NLS/sNLS.

Starting from the usual, temporal NLS equation, the same procedure recovers the well-known temporal growth rate. In this case
we introduce a wavenumber perturbation which may grow with time, rather than a frequency perturbation which may grow with
distance. The perturbation wavenumber will be denoted 𝑝𝑘, and we find the growth rate 𝜎 (cf. [30, Ch. 21.1])

𝜎2 =
𝜔2
𝑎
8
𝑝2𝑘
𝑘2𝑎

(

𝑎20𝑘
2
𝑎 −

1
8
𝑝2𝑘
𝑘2𝑎

)

. (B.8)

B.1. Spatial and temporal instability for the NLS

Within the NLS-framework the assumption of narrow bandwidth can be used to translate between spatial and temporal growth
rates. The first identification comes from the simple form of the group velocity in deep water

𝑑𝜔
𝑑𝑘

= 𝜔
2𝑘
,

which implies that we can assume
𝑝𝜔
𝑝𝑘

= 𝜔
2𝑘

for the frequency perturbation 𝑝𝜔 and the wavenumber perturbation 𝑝𝑘. This relationship can be observed when comparing the
stability boundaries for the spatial NLS and temporal NLS shown as dashed curves in Fig. B.10, e.g. the spatial NLS instability curve
for 𝜖 = 0.1 extends from 𝑝𝜔 = 0 to 𝑝𝜔 ≈ 0.145, while the temporal extends from 𝑝𝑘 = 0 to 𝑝𝑘 ≈ 0.29.

Secondly, we can relate growth in space and growth in time via the group velocity: in the case of spatial evolution a modulated
wave train grows as exp(𝜅𝑥) if the instability condition (B.7) is satisfied. This envelope moves with speed 𝑐𝑔,𝑎, i.e. 𝑥 = 𝑐𝑔,𝑎𝑡, indicating
that the corresponding temporal growth rate is obtained from multiplying by the group velocity. Indeed, replacing 𝑝𝜔∕𝜔𝑎 by 𝑝𝑘∕(2𝑘𝑎)
in (B.6) and multiplying by 𝑐𝑔,𝑎 = 𝜔𝑎∕(2𝑘𝑎) exactly recovers (B.8).

B.2. Spatial and temporal instability for the Zakharov equation

It is worth pointing out that the growth rate 𝜅 =
√

𝐷 of (43) is derived in terms of 𝜂 i.e. 𝜂 ∼ exp(𝜅𝑥), see (21)–(23), giving
growth rates for 𝐼𝑏, 𝐼𝑐 . In contrast, the growth rates derived from linear stability analysis (including Appendix B.1) are given in
terms of the modal amplitudes |𝐵𝑖| ∼ 𝐼1∕2. To compare these formulations we divide the growth rate from (43) by 2 (recall (43) is
the squared growth rate) to obtain

𝐷 =
(

𝛥
2
+ |𝐵𝑎|

2
(

𝑇𝑎𝑏
𝑐𝑔,𝑏

+
𝑇𝑎𝑐
𝑐𝑔,𝑐

−
𝑇𝑎
𝑐𝑔,𝑎

))2
−

𝑇 2
𝑎𝑎𝑏𝑐

𝑐𝑔,𝑏𝑐𝑔,𝑐
|𝐵𝑎|

4, (B.9)

hich reduces in the narrow-bandwidth limit to that obtained for NLS in (B.6). This involves approximating all kernels by the Stokes
ave (self-interaction) kernel, so that

𝑇𝑎𝑏 ≈ 𝑇𝑎𝑐 ≈ 𝑇𝑎 ≈ 𝑇𝑎𝑎𝑏𝑐 ≈
𝑘3𝑎
4𝜋2

.

oreover, all appearing group velocities are approximated by the carrier group velocity 𝑐𝑔,𝑎 = 𝑔∕(2𝜔𝑎). The wavenumber detuning
𝛥 is resolved as 2𝑘 − 𝑘 − 𝑘 = −2𝑝2 ∕𝑔, and 𝐵 is rewritten using (35).
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Fig. B.10 shows a comparison of the growth rates obtained from spatial/temporal ZE and spatial/temporal NLS equations. In
he limit of small steepness and small side-band separation (whether in frequency or wavenumber) we observe excellent agreement,
s expected. For the temporal evolution this has been observed since work of Crawford et al. [13], and it is reassuring to obtain
uch agreement for the newer spatial Zakharov equation. As the carrier steepness increases, the NLS growth rates begin to differ
ore markedly from those obtained without narrow-bandwidth restriction. While the simple rescaling from Appendix B.1 based

n group velocity is no longer applicable in such cases, the growth rates for the spatial and temporal Zakharov equations remain
ommensurable, as noted by Shemer & Chernyshova [23], albeit without showing any evidence.
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