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FLUH) INERTIA AND END EFFECTS I N R H E O M E T E R FLOWS 

Jason Peter Hughes 

Abstract 

This thesis is concerned with the characterisation of the flow behaviour of inelastic 

and viscoelastic fluids in steady shear and oscillatory shear flows on commercially available 

rheometers. 

The first part of this thesis is concerned with a linear viscoelastic theory to describe 

the oscillatory shear flow behaviour of fluids on a Weissenberg rheogoniometer. A fluid 

inertia perturbation analysis is used to produce analytical formulae for correcting complex 

viscosity data for first and second order fluid inertia effects. In order to validate the 

perturbation theory we perform a simulation of the oscillatory shear flow behaviour of 

Newtonian and single element Maxwell fluids on a Weissenberg rheogoniometer. 

A theoretical prediction of end effects and fluid inertia effects on steady shear 

viscosity measurements of Newtonian fluids in a recessed concentric cylinder geometry is 

developed for a GSR controlled stress rheometer and a Weissenberg rheogoniometer. The 

relevant equations are solved using a perturbation analysis which is valid for low Reynolds 

number flows. From this theory correction formulae are produced to compensate for end 

effects and second order fluid inertia effects in steady shear flows on these instruments. End 

effects and fluid inertia effects are also investigated for power law shear thinning fluids. 

The final part of the thesis is concerned with a theoretical prediction of the end 

effect of a recessed concentric cylinder geometry on complex viscosity measurements of a 

generalised linear viscoelastic fluid. The linear viscoelastic theory is carried out for 

oscillatory shear flows on a CSR controlled stress rheometer and a Weissenberg 

rheogoniometer. A fluid inertia perturbation analysis is used to produce analytical formulae 

to correct complex viscosity data for end effects and second order fluid inertia effects. 

Numerically simulated oscillatory shear data is used to establish the limitations of the second 

order fluid inertia correction formulae which include end effects. 
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CHAPTER 1 

INTRODUCTION 

Rheology is defined as *the study of the deformation and flow o f matter'. The term 

was invented by E.C. Bingham and was first accepted when the first Society of Rheology 

(American) was formed in 1929. This organisation brought together workers fi-om the fields 

of chemistry, engineering, mathematics and physics. The scope o f rheology is now 

extremely wide and is of importance to many industries, such as food, pharmaceutical, 

plastics, petroleum and rubber. 

In classical mechanics the deformation of solids was governed by Hooke's law for 

elastic deformations and the flow of fluids was governed by Newton's Law describing 

viscous flow. However the flow behaviour of the majority of materials lies between these 

two extremes and the material exhibits both solid-like and fluid-like properties. Such 

materials are described as viscoelastic. In this thesis we shall consider steady shear and 

oscillatory shear theories that can be used to characterise the flow properties of inelastic and 

viscoelastic materials respectively. 

Rheometry is an important area of rheological study which is concerned with the 

measurement of material properties in simple shear flow situations. These measurements can 

be used to characterise the flow behaviour of non-Newtonian fluids using suitably defined 

material functions. The rheological data obtained from the simple flow situations can also be 

used in the development of constitutive equations. These constitutive equations can then be 

used in conjunction with the stress equations of motion and the continuity equation to 

predict the behaviour of materials in more complex flow situations. The simple shear flow 

situations can be generated on an instrument known as a rheometer. In this thesis two 

different types of rheometer are considered, one being the CSR controlled stress rheometer 



where the material under test is subjected to a stress and the subsequent deformation is 

measured. The other type of rheometer is the controlled strain Weissenberg rheogoniometer 

where a deformation is applied to the material and the subsequent forces are measured. 

This thesis is concerned with a theoretical investigation of some of the simple flow 

situations that can be generated on the CSR controlled stress rheometer and the 

Weissenberg rheogoniometer. The main purpose of the work is to modify current rheometer 

formulae to give improved material data. This involves extending the existing theories to 

include fluid inertia effects and/or end effects. 

In chapter 2 we present the equations of motion and equations o f state required to 

describe the rheometer flows considered in this thesis. The equations of conservation of 

mass and conservation of momentum are presented and a brief description of their 

derivation is given. For the theoretical fluid models considered in this thesis we describe the 

formulation of the equations of state. In this chapter we also define the complex viscosity 

fijnction which is used to characterise the oscillatory shear flow behaviour of viscoelastic 

fluids. 

In chapter 3 we introduce the numerical methods that are used to solve the 

equations of motion for concentric cylinder flows. A description of the finite difference 

approximation of partial differential equations is given and iterative methods for solving the 

resulting linear system of algebraic equations are discussed. The method of transforming an 

irregular finite difference mesh in the physical domain to meshpoints with uniform spacing in 

a computational plane is described. In the analysis of steady shear concentric cylinder flow 

the authors numerical results will be compared with those obtained using the Polyflow 

package. We give a brief description of this package and discuss the relevant Polyflow 

boundary conditions for steady shear concentric cylinder flow. 

Chapter 4 is concerned with the linear viscoelastic theory for oscillatory shear flow 



on a controlled strain Weissenberg rheogoniometer. The oscillatory shear theory is 

presented for the parallel plate, concentric cylinder and cone and plate geometries where the 

upper platen is constrained by a torsion bar. At present the calculation o f complex viscosity 

in these geometries is based on a theory in which fluid inertia effects are ignored. A 

perturbation analysis, which is valid for small values of a non-dimensional fluid inertia 

parameter, is carried out to second order accuracy. Using this analysis formulae are 

produced for calculating the complex viscosity of a fluid which include first and second 

order fluid inertia effects. We also consider the case where the upper platen is connected to 

a strain gauge torsion head and present the relevant fluid inertia correction formulae. These 

correction formulae are compared to those for oscillatory shear flow on a CSR controlled 

stress rheometer. 

In chapter 5 we perform a numerical simulation of the oscillatory shear flow 

behaviour of Nev^onian fluids and single element Maxwell fluids on a Weissenberg 

rheogoniometer. Simulations are carried out for the case where the upper platen is 

constrained by a torsion bar and the case where the upper platen is connected to a strain 

gauge torsion head. The complex viscosity data generated fi-om these simulations is used to 

establish the effect of fluid inertia on complex viscosity predictions in the three geometries. 

We also simulate the oscillatory shear flow behaviour of Newtonian fluids and single 

element Maxwell fluids on a CSR controlled stress rheometer. From these simulations 

complex viscosity data is generated and compared with the corresponding data obtained 

when a strain gauge torsion head is used on the Weissenberg rheogoniometer. 

Chapter 6 is concerned with a theoretical prediction of end effects and fluid inertia 

effects on steady shear viscosity predictions obtained using a recessed concentric cylinder 

geometry on the CSR controlled stress rheometer. For Newtonian fluids the equations of 

motion are solved using a perturbation analysis which is valid for low Reynolds number 



flows. The perturbation equations are solved numerically using a finite difference method 

with an irregular mesh. From the perturbation theory we produce correction formulae to 

compensate for end effects and second order fluid inertia effects in steady shear concentric 

cylinder flows on a CSR rheometer. End effects and fluid inertia effects are also investigated 

for shear thinning fluids using the Polyflow package. Numerically simulated steady shear 

data is generated for a Newtonian fluid to establish the limitations o f the perturbation 

theory. 

In chapter 7 we consider steady shear end effects and fluid inertia effects for a 

recessed concentric cylinder geometry on the Weissenberg rheogoniometer. The analysis 

follows the same procedure to that in chapter 6 for steady shear concentric cylinder flow on 

a CSR controlled stress rheometer. Formulae which include end effects and second order 

fluid inertia effects are produced for calculating the steady shear viscosity of a fluid on the 

Weissenberg rheogoniometer. The limitations of the second order fluid inertia perturbation 

theory is investigated by simulating the steady shear concentric cylinder flow of Newtonian 

fluids on a Weissenberg rheogoniometer. 

Chapter 8 is concerned with a theoretical prediction of the end effect of a recessed 

concentric cylinder geometry on complex viscosity measurements of a generalised linear 

viscoelastic fluid. The relevant equations are solved using a perturbation analysis which will 

be valid when fluid inertia effects are small. A finite difference method with an irregular 

mesh is used to solve the perturbation equations. Using the perturbation theory the existing 

oscillatory shear formulae which include second order fluid inertia effects are modified to 

compensate for end effects. Numerically simulated data is generated for Newtonian fluids 

and single element Maxwell fluids and a comparison is made between the standard and 

modified formulae. The simulated data is also used to establish the limitations of the 

perturbation theory. 



Formulae for calculating the complex viscosity of a fluid in a concentric cylinder 

geometry on the Weissenberg rheogoniometer, which include first and second order fluid 

inertia effects, are presented in chapter 4. In chapter 9 these formulae are modified to 

include end effects. The analysis follows a similar procedure to that of chapter 8 and 

formulae, which include end effects and second order fluid inertia effects, are produced for 

calculating the complex viscosity of a fluid on a Weissenberg rheogoniometer with a torsion 

bar system. These equations are adapted to give the fluid inertia correction formulae for the 

case where the inner cylinder is connected to a strain gauge torsion head. A numerical 

simulation of the oscillatory shear flow behaviour of Newtonian fluids and single element 

Maxwell fluids is performed to generate complex viscosity data. Using this simulated data a 

comparison is made between the formulae of chapter 4 and the formulae modified to include 

end effects. We also generate simulated complex viscosity data for the Weissenberg 

rheogoniometer set up where the upper platen is connected to a strain gauge torsion head. 

This data is compared with the corresponding simulated data obtained for a CSR controlled 

stress rheometer. 



CHAPTER 2 

R H E O L O G I C A L EQUATIONS O F S T A T E AND EQUATIONS O F 

MOTION 

2.1 The characterisation o f f luids 

A fluid is defined as a substance which deforms when subjected to an applied force. 

However the fluid wi l l offer resistance to the deformation and the fluid viscosity is a 

measure o f this resistance. Fluids can be classified as being either a l iquid or a gas. A liquid 

possesses intermolecular forces o f attraction which hold it together w i th a definite volume 

but no regular shape. Whereas a gas consists o f molecules in random motion such that it has 

no definite volume, no regular shape and is highly compressible. In this thesis we wi l l only 

be concerned with the characterisation o f the flow properties o f incompressible fluids which 

have constant density. 

A fluid can be categorised as being either Newtonian or non-Newtonian. The vast 

majority o f fluids such as paints, lubricating greases and facial creams which possess a 

complex structure fall into the non-Newtonian category. Examples o f Newtonian fluids are 

air, water and mineral oils. 

The work presented in this thesis is concerned with the characterisation o f the flow 

properties o f fluids using commercially available rheometers. In chapters 4, 5, 8 and 9 we 

consider the characterisation o f the flow behaviour o f viscoelastic fluids in small amplitude 

oscillatory shear flow. A theory for the characterisation o f Newtonian fluids and inelastic 

non-Newtonian fluids in steady shear flow is considered in chapters 6 and 7. In order to 

develop these theories we require a set o f equations which describe the flow behaviour o f a 

fluid. These equations are referred to as the 'equations o f change' and indicate how the 

mass, momentum and energy o f the fluid change with position and time (Bird ei al [1] ) . In 



addition to these equations we require rheological equations o f state which describe the 

relationship between the stress tensor and the fluid viscosity. A brief description for the 

derivation o f the equation o f mass and the equation o f momentum is given in section 2.2. 

The equations o f state for the theoretical model fluids considered in this thesis are presented 

in section 2.3. 

2.2 Equations o f mot ion 

The physical laws that govern the motion o f a fluid are described by the equations o f 

conservation o f mass, momentum and energy. These equations are derived by considering 

an arbitrary fixed infinitesimal control volume bounded by the surface within a flowing 

fluid. The fluid is able to flow across the boundary S and through the control volume K. 

2.2.1 Equat ion o f conservation o f mass 

A fluid flows across the surface o f the infinitesimal control volume wi th velocity 

vector V. The law o f conservation o f mass states that the total mass o f fluid within a volume 

V wi l l only increase because o f a net influx o f fluid across the bounding surface S. On 

applying this law and using Gausses divergence theorem it can be shown (Bird e( al [\]) that 

the equation for the conservation o f mass can be written in conventional vector notation as 

^ = - ( V - p v ) (2.2.1) 
at 

where p is the local density o f the fluid, V - is the divergence operator and is the 

time derivative. It should be noted that the equation o f conservation o f mass is usually 

known as *the equation o f continuity'. 

For an incompressible fluid which has constant density p equation (2.2.1) reduces 

to 



V - v = 0 (2.2.2) 

In this thesis cylindrical polar coordinates (r,0,z) and spherical polar coordinates ir,0,<p) 

wi l l be used for the analysis o f rheometer flows. The equation o f conservation o f mass for 

these coordinate systems is given by Bird e( al[\]. 

2.2.2 Equat ion o f conservation o f momentum 

The fluid flowing across the surface S wi l l have momentum due to the bulk flow o f 

the fluid and momentum due to the molecular motions and interactions within the fluid. In 

addition there is momentum due to the force o f gravity acting on the fluid. The law o f 

conservation o f momentum states that the total momentum o f the fluid within the control 

volume K w i l l increase because o f a net influx o f momentum across S, by both the bulk flow 

and the molecular motions, and because o f the gravitational force. Using this law and 

Gauss's divergence theorem it can be shown (Bird ei al [2 ] ) that the equation for the 

conservation o f momentum can be written in conventional vector notation as 

P^=^'T-Vp^pg (2.2.3) 

where p is the fluid density, D/Dt is the substantial derivative, r is the extra stress 

tensor, p is the pressure and g is the gravitational acceleration. 

In equation (2.2.3) the opposite sign convention for stress, as adopted by Walters [3 ] , is 

used. This stress sign convention wi l l be used throughout the thesis. The equations 

embodied in equation (2.2.3) are also referred to as the stress equations o f motion (Walters 

[3]). Bird et al [\] and Walters [3] give the equation o f conservation o f mass for both a 

cylindrical polar coordinate {r,0,2) system and a spherical polar {r,9,<p) coordinate 

system. 



2.3 Equations o f state 

In this thesis we wi l l be concerned with the f low behaviour o f Newtonian fluids, 

inelastic power law fluids and viscoelastic fluids. These fluids fall into the category o f either 

a generalised Newtonian fluid or a generalised linear viscoelastic fluid. The equations o f 

state for these fluids wi l l be presented in this section. 

A viscoelastic fluid may exhibit the behaviour o f both a Newtonian fluid and a 

Hookean solid. It has the ability to store energy and wi l l therefore partially recover to its 

initial state on the removal o f any stress it has been subjected to. Viscoelastic fluids also 

have the abiHty to remember past events. In presenting the equation o f state for a 

generalised linear viscoelastic fluid we shall firstly consider a single element Maxwell model 

fluid (Maxwell [4 ] ) , which is the simplest form o f all linear viscoelastic models. 

2.3.1 The generalised Newtonian fluid 

A fluid is defined to be Newtonian i f the viscosity is independent o f time and 

unaffected by any shearing force or deformation the fluid is subjected to. The equation o f 

state for an incompressible Newtonian fluid gives the relationship between the shear stress 

tensor r and the shear rate tensor y (= Vv + (Vv ) ^ ) as 

T^T],y (2.3.1) 

where rj^ is the Newtonian viscosity 

The generalised Newtonian model is obtained by modifying the equation o f state for 

a Newtonian fluid to give a shear rate dependent viscosity Ti{y). Therefore for the 

generalised Newtonian model we have 

r = rjir)r (2.3.2) 

where y is the magnitude o f the shear rate tensor y , given by 



\ 2 / 
(2.3.3) 

In this equation is the second invariant o f the shear rate tensor, which in tensor notation 

is given by 

A = Z Z / . > ^ v (2-3-4) 

Many formulae have been produced in order to model the dependence o f the shear viscosity 

on the shear rate. In this thesis the Newtonian model (constant viscosity) and the power law 

model (Bird e/ al [\]), described below, wi l l be used. 

Power l(nv model fluid 

The shear viscosity o f a power law model fluid is given by 

ri(r) = kr (2.3.5) 

where k is the fluid consistency index and // is the power law index. 

It is noted that on setting / / = I equation (2.3.5) becomes the equation o f state for a 

Newtonian fluid. In equation (2.3.5) n < 1 represents a shear thinning fluid whereas n> 1 

represents a shear thickening fluid. 

2.3.2 The Maxwel l model fluid 

The characterisation o f the flow behaviour o f viscoelastic fluids is greatly simplified 

by imposing the restriction that an arbitrary element o f the fluid can only be subjected to a 

small deformation f rom its initial position. Under this restriction non-linear effects can be 

ignored. The single element Maxwell model (Maxwell [4 ] ) is obtained f rom the relationship 

between the stress tensor r and the strain tensor y o f a spring and dashpot in series. A 

spring behaves as an elastic solid and the stress/strain relationship is given by 
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T = Gr (2.3.6) 

where G is the rigidity modulus o f the spring. 

A dashpot consists o f a piston moving in a cylinder containing a fluid o f constant viscosity 

7/, and the relationship between the stress and the rate o f strain (shear rate) is given by 

T = Tj,r (2.3.7) 

The single element Maxwell mode! can be expressed as (Bird ef o/[\]) 

r + A , - ^ r = 7 , x (2.3.8) 

where A, = 7 , / G is a time constant referred to as the relaxation time. 

Assuming that T is zero at time / = -oo equation (2.3.8) can be expressed as 

r(0 rindt (2.3.9) 

where / now represents the present time and /' represents the past time. 

The function within the [ ] brackets is referred to as the relaxation modulus for the single 

element Maxwell model fluid. I t can be seen from equation (2.3.9) that the stress r ( / ) is 

dependent on the shear rate at the present time / as well as on the shear rate at all past times 

i'. The exponential decaying form o f the relaxation modulus in this equation implies that 

the most recent events have the greatest influence on the current stress and that the 

influence o f past events decays exponentially as we go back in time. Therefore the single 

element Maxwell model in equation (2.3.9) contains the notion o f a fading memory, where 

the fluid clearly remembers what it has experienced in the recent past but remembers very 

little o f events in the distant past. 

The single element Maxwell model can be generalised by considering a linear 

superposition o f an infinite number o f Maxwell elements. The differential form o f the 

generalised Maxwell model is given by 
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Tt-^^tJjT, = ?j,r, (2.3.10) 

where is the stress in the k*^ Maxwell element which has the parameters A ̂  and rj^. 

The stress for the generalised Maxwell model is given by 

r = f ; r , ( 2 . 3 . I I ) 

and hence we can write 

no 
k=] 

riOdV (2.3.12) 

This model has been found to describe the flow behaviour o f linear viscoelastic fluids 

reasonably well (Bird et a/ [ I ] ) . 

2.3.3 The generalised l inear viscoelastic model fluid 

The linear viscoelastic models represented by equations (2.3.9) and (2.3.12) are both 

of the same form, an integral over all past times where the integrand consists o f a relaxation 

modulus multiplied by the rate o f strain tensor. These models are contained within a more 

general equation o f state known as the generalised linear viscoelastic model, which is 

described by the equation 

r(0= ' GO-nriOdr (2.3.13) 
- 0 0 

where G( / - / ' ) is the relaxation modulus. 

It should be noted that as for the Maxwell models the integrand in equation (2.3.13) 

consists o f the product o f two fijnctions. The first function, the relaxation modulus 

G[t-V), depends on the nature o f the fluid and the second fijnction, the rate o f strain 

tensor Y(t'), is dependent on the nature o f the flow. 
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2.3.4 Derini t ion o f complex viscosity 

In chapters 4, 5, 8 and 9 theories for the determination o f the complex viscosity o f a 

fluid in small amplitude oscillatory shear flow wi l l be considered. For small amplitude 

oscillatory shear flow the shear rate tensor can be expressed as 

X ( / ' ) = / o ^ ' " ' (2.3.14) 

where is the shear rate amplitude, o) is the angular fi-equency o f oscillation and the real 

part o f these quantities is implied. 

On using equations (2.3.13) and (2.3.14) and making the substitution s = t-i* we can 

write 

riO = rj'r,e'^' (2.3.15) 

where , known as the complex viscosity fiinction, is given by (Bird ef al[\]) 

n = ^G{s)e-''^ds (2.3.16) 
0 

The complex viscosity ftjnction can be expressed in terms o f its real and imaginary parts as 

7^' =i-iGI(o (2.3.17) 

where rf is defined as the dynamic viscosity fijnction and C is defined as the dynamic 

rigidity fijnction. These two ftinctions describe the relative viscous and elastic components 

in any fluid under small amplitude oscillatory shear flow conditions. Alternatively the 

dynamic viscosity and dynamic rigidity functions are respectively interpreted as describing 

the energy dissipated and the energy stored by the fluid in the cyclic deformation. A 

knowledge o f the complex viscosity function provides a complete characterisation o f the 

oscillatory shear flow behaviour o f viscoelastic fluids. 

In this thesis we consider theories for determining the complex viscosity o f linear 

viscoelastic fluids on both a Weissenberg rheogoniometer and a CSR controlled stress 

rheometer. The oscillatory shear flow behaviour o f single element Maxwel l fluids on these 
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instruments wi l l be numerically simulated. From equation (2.3.9) the relaxation modulus 

G( / - / ' ) for a single element Maxwell fluid is given by 

Gii-n = —e-^"''^''' (2.3.18) 
A , 

On making the substitution 5 = / - / ' in equation (2.3.18) and using equation (2.3.16) the 

complex viscosity o f a single element Maxwell fluid can be expressed as 

; 7 - = ^ r e - ' 0 - - * . ) ' ^ . ^ (2.3.19) 
A, 0 

Evaluating the integral in equation (2.3.19) gives 

(2.3.20) 
(1 + /A,«y) 
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CHAPTER 3 

NUMERICAL METHODS USED FOR T H E SOLUTION O F T H E 

EQUATIONS OF MOTION 

3.1 In t roduc t ion to numerical methods 

An analytical solution to the stress equations o f motion (equation (2.2.4)) for a 

given equation o f slate can only be obtained for a very limited number o f fluid flow 

problems, usually in simple flow geometries. For the majority o f problems encountered a 

numerical method must be used in order to solve the relevant partial difiFerential equations 

(PDEs). In chapters 6 to 9 numerical methods wi l l be used to obtain solutions to the 

governing equations for the flow o f fluids in a finite concentric cylinder geometry. 

The two most commonly used numerical methods for the solution o f PDEs are the 

finite difference and finite element methods. An analytical solution to a PDE wi l l provide a 

continuous solution over the whole flow domain, whereas these numerical methods give the 

solution at only a discrete number o f points. The finite difference and finite element methods 

approximate the original PDE by an algebraic equation which is then solved at specified 

meshpoints within the flow domain. Descriptions o f the finite difference and finite element 

methods which are aimed at readers working in fluid dynamics can be found in Wendt [5] 

and Crochet et al [6] . A more comprehensive description o f the finite difference and finite 

element methods is given by Smith [7] and Huebner and Thornton [8] respectively. In the 

analysis o f end effects and fluid inertia effects, in both steady shear and oscillatory shear 

concentric cylinder flows, we wil l use a finite difference method to solve the governing 

equations. The commercially available package Polyflow [9] , which uses finite elements, 

wi l l also be used in the analysis o f steady shear concentric cylinder flow. 

For the analysis o f concentric cylinder flows the finite difference method wi l l be used 
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to solve elliptic equations over an irregular L shaped geometry. In order to give a brief 

introduction to this method we consider the finite difference solution o f Laplace's elliptic 

equation over a simple rectangular geometry. A description o f the Polyf low package wi l l be 

given in section 3.3. 

3.2 The f in i te difTerence method 

In order to describe the finite difTerence method we consider a regularly spaced 

mesh placed over a closed flow domain in the xy-plane. The mesh consists o f regularly 

spaced parallel lines placed in both the x-direction and the ^/-direction as shown in figure 

3.1. 

\ d 

\ 
r ^ 
i j +1 

/ +1,7 + 1 

\ 
f 1 9 1 / + I,7 

1 i - \ J - \ i + i . y - i 

Figure 3.1:- Discrete meshpoints for the finite difference method 

The regular spacing between meshpoints in the x and y directions is denoted by h and k 

respectively. In figure 3.1 the meshpoints are identified by using an index /' in the x-direction 

and an index j in the ^-direction. The finite difference method is based on replacing the 

partial derivatives in a PDE with algebraic difference quotients to give a system o f algebraic 

equations. These equations are then solved at the specified discrete meshpoints. 
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3.2.1 Fin i te dif ference representation o f part ia l derivatives 

Finite difference representations for the partial derivatives are obtained using Taylor 

series expansions. We consider a velocity field u(x,y) over the ry-plane shown in figure 

3.1 and denote the velocity at the meshpoint (/,_/) by u^j. The velocity 1/̂ ,̂ ̂  at the 

meshpoint (i + \,J) can be expressed in terms o f a Taylor series expanded about the 

meshpoint as 

U x j . 2! 
' .y ' . J 

Similarly for the velocity u._^ j at the meshpoint ( / - l , y ) we have 

(3.2.1) 

hi 
2 ! l . . 3! 

+ . . , (3.2.2) 

On using equations (3.2.1) and (3.2.2) we obtain 

2h 
(3.2.3) 

This equation is referred to as the second order central difference representation for the 

derivative dujdx at the meshpoint { i j ) . Equations (3.2.1) and (3.2.2) can also be used to 

give a second order central difference representation for the derivative d^ufdx at the 

meshpoint ( / ,y) as 

(3.2.4) 

It can be shown that the second order central difference representation for the derivative 

dufdy at the meshpoint ( ; ,y) is given by 

(3.2.5) 
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For the second order central difference representation o f the derivative d^ujdy^ at the 

meshpoint ( / ,y) we have 

'--^Oik') (3.2.6) 

i j * 

Equations (3.2.2) to (3.2.6) can therefore be used to represent the first and second order 

partial derivatives o f w(x,_v) in terms o f discrete meshpoints ( i y j ) within the flow domain. 

3.2.2 Fini te dif ference boundary conditions 

I f a finite difference method is to be used to solve an elliptic PDE then the PDE 

must apply over a closed domain which is surrounded by a closed boundary. For an elliptic 

PDE the solution at any point P influences the solution at any other point within the closed 

domain. In turn the solution at P is influenced by any point on the closed boundary. 

Therefore boundary conditions must be specified over the entire boundary surrounding the 

closed domain. Considering the velocity w(x,_y) over a closed domain in the xy-plane these 

boundary conditions usually take one o f the following forms 

1. Dirichlet condition 

Specifying the value o f the variable u{x,y) along the boundary. 

2. Neumann condition 

Specifying the derivative in the outward normal direction to the boundary, e.g. 

dufdy - 0 along the boundary 

3.2.3 The fm i te difTerence method applied to Laplace's equat ion 

In chapters 6 to 9 we wi l l be using a finite difference method to solve 

^[/ /( jc,>') ] = ^ ( x , ^ ) over an L shaped flow domain for various operators ^ . Some o f the 

boundary conditions for ii(x^y) wi l l be o f the Dirichlet type and others wi l l be o f the 
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Neumann type. In order to demonstrate the formation o f a finite difference scheme to solve 

these type o f equations we consider the solution o f Laplace's equation, w i th a mixture o f 

Dirichlet and Neumann boundary conditions, over the rectangular region shown in figure 

3.2. 

c u known 
B c B 

u known — r + r = 0 
dx 

0 u known A 

Figure 3.2:- Solution domain for Laplace's equation. 

A mesh is placed over the region OABC with m divisions in the x-direction and /; divisions 

in the >'-direction. The number o f divisions m and n can be chosen to give a square mesh 

which has steplength h in both the x and y directions, i.e. h = A/ni = B/n. For a square 

mesh equations (3.2.4) and (3.2.6) can be used to discretise Laplace's equation as 

(3.2.7) 

It is noted that the meshpoint node notation in the x-direction runs f rom i = 0 on boundary 

OC to i = m on boundary A B . Similarly in the^^-direction the meshpoints are labelled f rom 

j = 0 on boundary OA to j = n on boundary BC. On rearranging equation (3.2.7) the 

velocity u^j at a meshpoint (/,_/) can be expressed as 

" w " 4K>-> '̂'-'.̂ ^ 
for / = 1 to /n and _/ = 1 to « - 1 . 

(3.2.8) 
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Note that equation (3.2.8) is not applied at meshpoints on boundaries O A , OC and BC 

where the value o f t^x.y) is known. However the boundary condition on boundary BC is 

o f the Neumann type, where the derivative in the outward normal direction is specified, and 

equation (3.2.8) must be applied at meshpoints on this boundary. Using equation (3.2.8) to 

evaluate u„j on boundary BC wil l involve the meshpoints (/n+1,7) which lie outside the 

solution domain. Such points are known as 'f ictit ious points' and are assigned a value by 

using the boundary condition. On boundary BC we have the condition du/^x = 0 and 

therefore f rom equation (3.2.3) u, j must satisfy the condition = z V i . y O" this 

boundary. 

3.2.4 I terat ive methods fo r solving the f in i te difTerence equations 

Equation (3.2.8) represents a system o f linear equations which can be solved 

numerically using a suitable iterative method. Three such methods are the Jacobi, Gauss-

Seidel and successive over relaxation (SOR) methods (Smith [7]) which wi l l be described 

briefly. In the computed solution the values o f u.j over the whole flow domain are stored 

as a matrix and a single iteration o f the iterative method uses equation (3.2.8) to update 

each matrix entry. Note that for the example considered we have the ' f ict i t ious points' 

(m+1,7) which are also stored in the matrix. Hence the values o f M, y are stored in a 

(/n + 2) X ( / / + I ) matrix where the entries for / = 0 to /w + 1 and j = 0 to n correspond to 

the meshpoints in the flow domain. 

The system o f linear equations represented by equation (3.2.8) can be solved 

numerically using the Jacobi method which gives the iterative procedure 

^^^^^ 

For this method / = 1 to /w and j= \ to / / - I gives one complete iteration and 
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r = 0,1,2,... performs the iteration process until a specified convergence criteria is reached. 

Rather than waiting until the next iteration to use the ( r +1)*** approximations the 

Gauss-Seidel method uses them as soon as they are available giving the iterative procedure 

''r=̂ KM+'Ĉ ''̂ :̂ +"̂ .̂] (3.2.10) 

The rate o f convergence o f the Gauss-Seidel method can be improved by over-

correcting the lij^/^^ estimate at each iteration, known as the successive over relaxation 

method (SOR) method. I f i / / ^^ * ' * is the Gauss-Seidel estimate then the SOR estimate w/;/'* 

is obtained by correcting ŵ *̂*̂  using the formula 

"r='̂ '+-[̂ r-"̂ ] (32.11) 

where w is the relaxation parameter. 

From equations (3.2.10) and (3.2.11) the SOR method for solving the system o f linear 

equations represented by equation (3.2.8) is given by the iterative procedure 

The SOR method is divergent unless 0 < w < 2 and the optimum value, denoted as . 

usually lies in the range 1 <>v < 2 (Smith [7]). However it is not possible to determine 

for an arbitrary system o f linear equations (Smith [7] ) . I t should be noted that formulae for 

determining have been obtained for linear systems o f equations where the matrix 

satisfies specific conditions. 

3.2.5 I r regular f in i te difTerence meshes and transformations 

In figure 3.1 the meshpoints are regulariy spaced in both the x and y directions 

where the spacing is given by h and k respectively. However it is not necessary that the 

meshpoints are regularly spaced and it is possible to use irregulariy spaced meshpoints in 
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both directions. In this case h will have a different value between each successive pair of 

meshpoints in the x-direction and similarly k will have a different value between each 

successive pair of meshpoints in the j/'direction. The majority of finite difference solutions 

are obtained on a mesh which has regularly spaced meshpoints, since this simplifies the 

programming of the solution and results in greater accuracy (Jones and Thompson [10]). 

However the regular spacing of meshpoints does not have to occur in the physical domain. 

Instead the fmite difference solutions can be obtained in a transformed computational space, 

which has uniformly spaced meshpoints in the transformed independent variables 

corresponding to the irregular mesh in the physical domain. A general discussion of the 

transformation of variables is given by Anderson [ I I ] . In this thesis the governing equations 

of both steady shear and oscillatory shear flow will be transformed to a computational plane 

in order to determine solutions using a finite difference method with a regular mesh. 

3.3 The Polyflow package 

The Polyflow package [9] is a finite element program which has primarily been 

designed for simulating viscous and viscoelastic flows which occur in processing 

applications. It can be used to solve flow problems within the categories of isothermal or 

non-isothermal, two- or three- dimensional and steady state or time dependent. In this thesis 

Polyflow will be used to solve the governing equations of steady shear concentric cylinder 

flow for fluids which obey isothermal viscosity laws. Steady shear concentric cylinder flow 

is axisymmetric about the axis of rotation of the cylinders and has three velocity 

components. This type of flow is classed by Polyflow as a 2XD axisymmetric problem 

(Polyflow [9]). 

Polyflow is a self contained package which is divided into several modules. In the 

analysis of steady shear concentric cylinder flow we use three of the Polyflow modules 
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which will now be briefly described. The geometry and the finite element mesh are 

generated using the Polymesh module where sub-domains and boundary sets can be defined. 

The material properties, boundary conditions and numerical parameters o f the problem are 

specified using Polydata which generates a complex data file. This data file activates the 

central Polyflow server which also uses the mesh file generated by Polymesh. For the 

applications considered in this thesis Polyflow generates a results data file which contains 

the finite element meshpoint coordinates and values fi^r the velocity components, 

streamfijnciion, pressure and shear stress tensors at each meshpoint. The results generated 

by Polyflow can be viewed graphically using the Polyplot module which displays contour 

lines, velocity vectors, streamlines and cross sections. In the steady shear concentric 

cylinder flow simulations we require the value of the shear stress tensors along the inner 

cylinder wall. These stresses can be obtained from the Polyflow results data file and used to 

determine the torque exerted on the inner cylinder due to the motion of the fluid. A 

description of the Polyflow boundary conditions used in the steady shear concentric cylinder 

flow problem is now given. 

3.3.1 Polyflow boundary conditions 

It has previously been stated that concentric cylinder flow is axisymmetric about the 

axis of rotation of the cylinders and therefore only half the flow domain needs to be 

considered. This is classed by Polyflow as a 2}^D problem and one o f the boundaries o f 

the Polyflow flow domain will be a line of symmetry along the line r = 0 . 

On solid boundaries of the flow domain we use the condition 'Normal and tangential 

velocities imposed*. The normal velocity component along a boundary is denoted by v„ and 

the tangential component by . When the *Normal and tangential velocities imposed' 

condition is used for a 2^0 axisymmetric problem the user must also specify whether to 
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impose the w-velocity or the w-force. This represents the angular velocity or angular force 

about the axis of rotation. For the steady shear concentric cylinder flow problem we set 

= = 0 and impose the w-velocity on the solid boundaries whether they are fixed 

(w = 0 ) or moving (w 0). 

For free surface boundaries which remain in their initial positions the condition 

'Normal velocity and tangential force imposed' is used. The normal velocity component 

along a boundary is denoted by and the tangential force component by . When the 

'Normal velocity and tangential force imposed' condition is used for a D axisymmetric 

problem the w-velocity or w-force on the boundary must be specified. Setting = / , = 0 

and the w-force to be zero gives the boundary conditions required for a horizontal free 

surface which remains in its initial position. 

3.4 Non-dimensional form of the equations of motion 

In chapters 6 and 7 we will be concerned with obtaining numerical solutions to the 

relevant equations of motion for steady shear concentric cylinder flow. End effects and fluid 

inertia effects will be considered for various Newtonian and power law fluids. Obtaining 

solutions numerically involves a large amount of arithmetic and computational time. It is 

therefore advantageous to obtain a numerical solution which is applicable to more than one 

specific case of concentric cylinder flow. This can be achieved by expressing the equations 

of motion in terms of non-dimensional variables and obtaining a numerical solution to the 

equations in their non-dimensional form. For steady shear concentric cylinder flow the 

equations of motion can be expressed in non-dimensional form by deflning a Reynolds 

number (Bird ei al [2]), denoted . The Reynolds number provides the ratio of the inertial 

forces to the viscous forces in the flow. We now briefly consider the relationship between 

Reynolds number and the behaviour of steady shear concentric cylinder flow. 
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At very low Reynolds numbers the inertial forces are negligible and the flow is 

dominated by the viscous forces. In this case the concentric cylinder flow can be considered 

to be laminar about the axis of rotation. As the Reynolds number increases secondary 

inertial flows occur and the flow becomes more unstable with increasing Reynolds number 

up to a critical value (Bird et al [2]). Above the critical Reynolds number the inertial forces 

dominate the viscous forces and the flow becomes unstable. It is noted that the critical value 

of the Reynolds number is dependent on the ratio between the inner and outer cylinder radii, 

the angular speed of rotation and the fluid density and viscosity. Hence the description Very 

low Reynolds number' is relative to the specified flow conditions and fluid properties. 
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CHAPTER 4 

T H E E F F E C T O F FLUID INERTIA ON C O M P L E X V I S C O S I T Y 

PREDICTIONS OBTAINED F R O M A W E I S S E N B E R G 

RHEOGONIOMETER 

4.1 Introduction 

This chapter is concerned with the characterisation of linear viscoelastic fluids using 

a controlled strain Weissenberg rheogoniometer in its oscillatory shear mode. At present the 

formulae incorporated into the rheogoniometer software for calculating the complex 

viscosity of a fluid are based on a theory in which fluid inertia effects are ignored. 

Oldroyd [12] produced a theory for the oscillatory shear flow of a viscoelastic fluid 

in a concentric cylinder geometry on an elastoviscometer. On this instrument the amplitudes 

of the inner and outer cylinders can be measured in which case the amplitude ratio can then 

be determined. A formula for the amplitude ratio, as a function of the geometry and fluid 

parameters, has been produced by Oldroyd [12] in terms of Bessel functions of the first and 

second kind. Markovitz [13] developed a method for expanding these Bessel functions and 

produced an approximate formula for the amplitude ratio. From this formula the complex 

viscosity of a fluid could be obtained by solving a quadratic equation with complex 

coefficients. Walters [14] modified the theory of Oldroyd [12] to include the phase lag of 

the inner cylinder behind the outer cylinder. An equation of motion in terms of the phase lag 

and the amplitude ratio is given by Walters [14] and it is concluded that both of these 

quantities should be included i f a complete characterisation of viscoelastic fluids is required. 

Series approximations to this formula for both large arguments of the Bessel functions and 

small arguments of the Bessel functions are given by Walters [15]. It is proposed that the 

approximation for small arguments of the Bessel functions is rapidly convergent i f the 
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quantity ah is small, where a is a parameter that governs the magnitude o f fluid inertia 

effects and h is the gap between the inner and outer cylinders. 

Weissenberg [16] produced a theory for oscillatory shear flow in a small angle cone 

and plate geometry which assumed that the shear rate across the gap between the cone and 

plate is a constant at all frequencies of oscillation. On making this assumption this worker 

was effectively ignoring fluid inertia effects. A solution to the equation of motion for 

oscillatory shear flow in a cone and plate geometry which does not assume a constant shear 

rate across the gap was obtained by Maude and Walters [17]. The solution given by these 

workers was valid for small values of a provided that the gap between the cone and plate 

is small enough for edge effects to be ignored. Using a separation of variables method Nally 

[18] obtained an exact solution to the equation of motion for oscillatory shear cone and 

plate flow in terms of Bessel functions of the first kind and Legendre*s associated functions 

of the first and second kind. From this solution Nally [18] produced an equation for a cone 

and plate rheogoniometer which, for a given frequency, expresses the amplitude ratio and 

phase lag in terms of the variable a. Numerical results obtained by Nally [18] for small 

cone angles (<3°) showed that the shear stress can vary considerably along the radius of 

the cone. It was concluded that the assumption of constant shear stress across the gap can 

only be made for a narrow range of frequencies and materials and the exact theory should 

be used i f experiments are to be conducted for a wide range of frequencies and materials. 

However the exact equation of Nally [18] was too complicated to be usefiji for 

experimentalists wishing to determine a from the measured amplitude ratio and phase lag. 

An approximation to this equation, which is valid for small a, is obtained by Walters and 

Kemp [19] for the case where the gap between the cone and plate is small (<4* ) . A 

formula including first order fluid inertia effects is produced, which can be used to 

determine a from the experimentally measured amplitude ratio and phase lag. 
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Walters and Kemp [20] developed a theory for oscillatory shear flows in the parallel 

plate geometry on a Weissenberg rheogoniometer and produced a non-linear equation 

which expresses a in terms of the measured amplitude ratio and phase lag. An iterative 

procedure to determine the exact value of a from this equation is given by these workers. 

Walters and Kemp [20] also determined a series approximation to the exact equation which 

is valid when a / i is very small, where h is the gap between the parallel plates. The exact 

equation for the parallel plate geometry is much simpler than the corresponding exact 

equations for the concentric cylinder and cone and plate geometries (Walters [15] and Nally 

[18]). From both a theoretical and experimental point of view it is concluded by Walters and 

Kemp [20] that the parallel plate geometry is the most suitable for oscillatory shear testing 

on a Weissenberg rheogoniometer. 

I f fluid inertia effects are ignored in the theory the complex viscosity can easily be 

determined from the measured amplitude ratio and phase lag on a Weissenberg 

rheogoniometer for all three geometries. However determining the complex viscosity, when 

fluid inertia effects are included in the theory, from the exact equations (Walters [15], Nally 

[18], Walters and Kemp [20]) requires the use of suitable iterative techniques. Iterative 

methods can be time consuming and since the equations have multiple solutions 

convergence to the correct solution is not guaranteed. Therefore iterative solutions are by 

no means a suitable method for experimentalists to interpret experimental measurements 

into complex viscosity predictions and other techniques will be considered. Fluid inertia 

effects in the cone and plate, parallel plate and concentric cylinder geometries have been 

considered by Golden [21] for oscillatory shear flows on a CSR controlled stress rheometer. 

I f fluid inertia effects are ignored in the theory complex viscosity data can easily be 

calculated from experimental measurements made on the CSR controlled stress rheometer. 

Using a perturbation analysis Golden [21] has produced formulae which can be used to 
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correct the complex viscosity prediction for both first and second order fluid inertia effects. 

It is concluded that these corrections should be used when complex viscosity predictions are 

made, especially for concentric cylinder geometries and wide gap parallel plate geometries. 

In this chapter we consider fluid inertia effects in oscillatory shear flows on a 

controlled strain Weissenberg rheogoniometer. The oscillatory shear theory for linear 

viscoelastic fluids is presented for the parallel plate, concentric cylinder and cone and plate 

geometries. Using a fluid inertia perturbation analysis (Golden [21]), which is valid for small 

fluid inertia effects, we develop formulae for determining the complex viscosity of a fluid 

which include both first and second order fluid inertia effects. These formulae will take a 

similar form to those produced by Golden [21] and can be used as on line corrections for 

complex viscosity data obtained experimentally from a Weissenberg rheogoniometer. 

For all three geometries simulated oscillatory shear data will be generated for a 

Newtonian fluid and a single element Maxwell fluid and used to consider the validity of the 

second order fluid inertia perturbation theory. The simulated data, presented in chapter 5, 

will also be used to establish the frequency range of applicability of the second order fluid 

inertia corrections for Newtonian and single element Maxwell fluids. 

The oscillatory shear theory presented in this chapter is developed for the case of the 

upper platen of the geometry being constrained by a torsion bar of finite stiffness. However 

this theory can easily be adapted to the case where the upper platen o f the geometry is 

connected to a strain gauge torsion head by assuming that the upper platen remains 

stationary for this torsion head system. Therefore we consider the strain gauge torsion head 

to be infinitely stiff and when it is used on a Weissenberg rheogoniometer the upper platen 

of the geometry will be stationary as the lower platen oscillates. This is in contrast to the 

oscillatory shear flow conditions on a CSR controlled stress rheometer where the upper 

platen oscillates and the lower platen is stationary, which is considered for comparison 
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purposes. 

Simulated oscillatory shear data for Newtonian and single element Maxwell fluids 

will be generated for the case where a strain gauge torsion head is used on the Weissenberg 

rheogoniometer. This data, which is presented in chapter 5, will be compared with the 

corresponding simulated oscillatory shear data obtained for a CSR controlled stress 

rheometer. Comparisons will be made, for a given geometry, between the fluid inertia 

effects on the Weissenberg and CSR instruments and the limitations o f the second order 

fluid inertia perturbation theory for each instrument will also be discussed. 

4.2 Parallel plate geometry 

4.2.1 Governing equations 

With reference to a set of cylindrical polar coordinates {r,0,z) a viscoelastic fluid 

occupies the region between two coaxial parallel plates of radius a, separated by a vertical 

distance h as shown in figure 4.1. The lower plate is forced to perform small amplitude 

angular oscillations of amplitude 6^ and frequency / (cycles/sec) about the r-axis. The 

resulting motion of the fluid causes the upper plate, which is constrained by a torsion bar of 

stiflEhess K, to perform oscillations about the r-axis of amplitude 6^ with a phase lag c 

behind the motion of the lower plate. It is assumed that the amplitude o f oscillation of the 

driven lower plate is sufficiently small to ensure that the flow is in the linear viscoelastic 

region and hence non-linear fluid inertia terms can be neglected in the equations of motion. 

On neglecting edge effects we assume a velocity distribution, which satisfies the equation of 

continuity for incompressible fluids, of the form 

V . = 0 , v , = r / ( z ) e ' ^ ^ , = 0 (4.2.1) 

where co-lnf (radians/sec) is the angular frequency of oscillation and the real part of 
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these quantities is implied. 

This velocity distribution gives one non-zero component of the shear stress tensor as 

ro. = V r ^ e ' - (4.2.2) 

where 7]" is the complex viscosity of the fluid. 

Substituting equations (4.2.1) and (4.2.2) into the relevant stress equations of motion (Bird 

et a/ [ I ] ) and noting that the flow is axi-symmetric we obtain the second order ordinary 

differential equation 

^ ^ + «VW = 0 (4.2.3) 
az 

In this equation or ̂  is a complex parameter, which governs the magnitude o f fluid inertia 

effects, defined as (Walters [3]) 

a ^ = ^ (4.2.4) 
1 

where p is the fluid density. 

On using equation (4.2.1) the boundary conditions for the function / ( z ) are given by 

f{0)=e^io}e''' (4.2.5) 

f{h) = e,iQ} (4.2.6) 

The solution of equation (4.2.3) subject to these boundary conditions is 

f { z ) = ico [^,cosec(a h) - O^e'' cot(a h)] s\T\{a z) + iwO^e*' cos(a z) (4.2.7) 

By the principle of conservation of angular momentum the equation of motion of the upper 

plate can be expressed as 

C^-KO^ie (4.2.8) 

where 6 is the angular displacement of the upper plate, is the torque exerted on the 

upper plate due to the motion of the fluid and / is the moment of inertia of the member 
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constrained by the torsion bar. The angular displacement o f the upper plate is given by 

6=6^ e"̂  and hence in equation (4.2.8) we have 

C^^{K-Io}^)e,e''^ (4.2.9) 

The torque Cp exerted on the upper plate due to the motion of the fluid is given by 

C.^-2n[r'T^\^_^dr (4.2.10) 

Using equations (4.2.2) and (4.2.7) the TQ. shear stress on the upper plate can be 

determined and on substituting into equation (4.2.10) we have 

_ niwa^a ^ , co t (aA) - - : ^ ^V (4.2.11) 
i(a/ i) . 

On combining equations (4.2.9) and (4.2.11) the equation of motion of the upper plate can 

be expressed as 

e"" S 
— = cos(ah) + — 
& ph^co 

= cos(a/i) + —f^(a/?)s in(a/ i ) (4.2.12) 

where 5 is a geometrical parameter given by 

^^V^iK-Ia^ (4.2.3) 

and «9(= ^ 1 / ^ 2 ) *s defined as the amplitude ratio. 

The frequency <y and amplitude of the lower plate are prescribed by the Weissenberg 

rheogoniometer operator and the resulting amplitude ^, and phase lag c o f the upper plate 

are measured. Therefore in equation (4.2.12) the amplitude ratio »9, phase lag c and 

geometrical parameter S are known and the complex viscosity can then be determined. 

However equation (4.2.12) which includes ftill fluid inertia effects is non-linear in terms of 

the non-dimensional quantity ah and a full solution can only be obtained using a suitable 

numerical iterative technique, in this thesis we shall consider a perturbation method of 
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solution which will be valid for the case when fluid inertia eflFects are small. From the 

perturbation theory we will produce formulae which can be incorporated into the 

rheogoniometer software to provide an on line correction of experimental data for first and 

second order fluid inertia effects. 

4.2.2 Perturbation method of solution to predict complex viscosity 

Equation (4.2.12) is the equation of motion of the upper plate and on using equation 

(4.2.4) it can be expressed as 

iS sin(a/i) 
— = cos(a/i) , 
i9 Tj ah 

(4.2.14) 

For oscillatory shear parallel plate flow in which fluid inertia effects are small, we consider a 

Taylor series expansion of equation (4.2.14) in terms of the non-dimensional parameter ah 

about the point ah-0. On working to second order terms in the non-dimensional 

parameter {ah)^ the right hand side of equation (4.2.14) can be expanded to give 

iS " 1 MS 
• 

7 
2 6 77* 

{ahf + J \_iS_ 
24 120 rf 

(ahy (4.2.15) 

We define 77J to be the complex viscosity of the fluid when fluid inertia effects are ignored. 

The equation of motion of the upper plate when fluid inertia effects are ignored is then 

obtained from equation (4.2.15) by setting a = 0 and replacing 77" by 77* to give 

(4.2.16) 

The measured amplitude ratio i9 and phase lag c are then used to calculate the complex 

viscosity TJQ , when fluid inertia effects are ignored, by expressing equation (4.2.16) in the 

form 
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iS 
no = (4.2.17) 

On considering the real and imaginary components of equation (4.2.17) formulae for 

calculating the dynamic viscosity TJQ' and the dynamic rigidity G^' of a fluid, when fluid 

inertia effects are ignored, are given by (Walters [3]) 

~S3sin(c) 

[6»' -2,9cos(c) + l ] 

0}S& [cos(c)-i9] 

[ ^ ' -2i9cos(c) + l ] 

(4.2.18) 

(4.2.19) 

We define the complex parameter a] as 

2 - 'P^ 
a 

no 
(4.2.20) 

On using equations (4.2.15), (4.2.16) and (4.2.20) we obtain a relationship between TJI and 

7]" given by 

iS ' 1 1/5 
• • 

7 7 
2 6 T]' V 

1 1 iS 
(4.2.21) 

24 nOrj 

In order to determine an expression for 77* in terms of 77J from this equation we expand 

tj' as a second order power series in the non-dimensional parameter {a^hy given by 

On substituting equation (4.2.22) into equation (4.2.21) we obtain 

(4.2.22) 

iS_ 

n'o 2 TjlU rjl 

1 1 7 
• 2 

_ l _ }_ri\__iS_ 

2^^2nl 7; I 120 3 ;/; i^. 2 ^ -
(4.2.23) 

where terms of order {a^hy and higher have been neglected. 
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Comparing coefficients of the (a^/i)^ terms gives 

3 5 
(4.2.24) 

On comparing coefficients of the (ao'')* terms and using equation (4.2.24) we have 

24 15 5 
(4.2.25) 

Substituting these expressions for 77* and 772 into equation (4.2.22) gives 

2 [ 3 S J ̂  2 4 l l 5 S 
(4.2.26) 

On using equation (4.2.20) we can express equation (4.2.26) in the form 

iph'coix 
1 =Vo + s J 2477;- [15 5 J 

Equation (4.2.27) is the formula for calculating the complex viscosity o f a fluid which 

corrects for first and second order fluid inertia effects. In this equation it should be noted 

that 77* is known from equation (4.2.17). 

In order to establish the limitations of the second order fluid inertia perturbation 

theory we shall simulate the oscillatory shear flow behaviour of a Newtonian fluid and a 

single element Maxwell fluid in the parallel plate geometry. The simulated data will be 

presented in chapter 5. 

4.2.3 Complex viscosity prediction for a strain gauge torsion head system on the 

Weissenberg rheogoniometer 

On a Weissenberg rheogoniometer instead of constraining the upper plate with a 

torsion bar it is possible to connect the upper plate to a strain gauge torsion head. The strain 

gauge measures the torque exerted on the upper plate due to the motion o f the fluid and in 

relation to a torsion bar has a stiffness K of approximately 5,000 Nm/rad. This stiffness 
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results in minute amplitudes of oscillation in comparison to those obtained using a torsion 

bar. Therefore it is assumed that the upper plate is stationary and in the theory we consider 

the strain gauge to have a stiffness K of infinity. It is noted that i f K is infinite then the 

geometrical parameter S defined in equation (4.2.13) will also be infinite. For this type of 

oscillatory shear flow a relationship between 770* and 77* is obtained by combining equations 

(4.2.12) and (4.2.16) and setting S = ^ io give 

Setting 5 = 00 in equation (4.2.26) gives the second order fluid inertia correction for 

complex viscosity data obtained using a strain gauge torsion head as 

7o (4.2.29) 
360 

I f the stiffness of the strain gauge is considered to be infinite we have the lower plate 

oscillating with small amplitude at a prescribed frequency and the upper plate stationary. 

This is a similar situation to parallel plate oscillatory shear flow on a CSR controlled stress 

rheometer, where the upper plate oscillates with small amplitude and the lower plate is 

stationary, which is now considered for comparison purposes. 

4.2.4 Complex viscosity prediction for a CSR controlled stress rheometer 

On a CSR controlled stress rheometer an oscillatory torque of amplitude Q and 

frequency / is applied to the upper plate, forcing it to make small amplitude oscillations of 

amplitude with a phase lag c behind the applied torque. The lower plate remains 

stationary. An equation of motion for the upper plate is determined by considering the 

torque exerted on the upper plate due to the motion of the fluid. Using the equations given 

by Golden [21] for this type of oscillatory shear flow we obtain a relationship between rjl 
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and rf as 

T]l = ahcoi{ah)Tj' (4.2.30) 

An expression to correct complex viscosity data obtained from a CSR controlled stress 

rheometer for second order fluid inertia effects is given by Golden [21 ] as 

7 =7o l+ jM'+^M' (4.2.31) 

It should be noted from equations (4.2.28) and (4.2.30) that the relationship 

between 77' and TJ* on a CSR controlled stress rheometer is different to that on a 

Weissenberg rheogoniometer fitted with a strain gauge torsion head. The difference in these 

relationships is due to the torque being measured on the stationary plate on the Weissenberg 

rheogoniometer, whereas on the CSR controlled stress rheometer the torque is measured on 

the moving plate. It should be noted that on both instruments the strain is measured on the 

moving surface. 

The difference in complex viscosity predictions obtained from the Weissenberg 

rheogoniometer fitted with a strain gauge torsion head and the CSR controlled stress 

rheometer will be demonstrated, in chapter 5, by simulating the oscillatory shear flow 

behaviour of a Newtonian fluid and a single element Maxwell fluid in the parallel plate 

geometry on each instrument. The simulated data will also be used to establish the 

frequency range of applicability of the respective second order fluid inertia corrections given 

in equations (4.2.29) and (4.2.31). 

4,3 Concentric cylinder geometry 

4.3.1 Governing equations 

With reference to a set of cylindrical polar coordinates (r,0,z) a viscoelastic fluid 
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occupies the region between two coaxial cylinders as shown in figure 4.2. The inner and 

outer cylinders have radii /; and respectively and the fluid is considered to be in contact 

with the cylinders, which are assumed to be infinitely long in the z direction, over a length h. 

Therefore end effects are ignored in the theory (end effects in concentric cylinder oscillatory 

shear flow on a Weissenberg rheogoniometer will be considered in chapter 9). The outer 

cylinder is forced to perform small amplitude angular oscillations of amplitude 0^ and 

frequency / (cycles/sec) about the 7-axis. The resulting motion of the fluid causes the inner 

cylinder, which is constrained by a torsion bar of stiffness K, to perform oscillations about 

the z-axis of amplitude 6^ with a phase lag c behind the motion of the outer cylinder. It is 

assumed that the amplitude of oscillation of the driven outer cylinder is sufficiently small to 

ensure that the flow is in the linear viscoelastic region and hence non-linear terms can be 

neglected in the equations of motion. On neglecting end effects we assume a velocity 

distribution, which satisfies the equation of continuity for incompressible fluids, of the form 

^ = 0 , v, = r/(r)e"*^ , V, =0 (4.3.1) 

where oy-ln f (radians/sec) is the angular frequency of oscillation and the real part of 

these quantities is implied. 

This velocity distribution gives one non-zero component of the shear stress tensor as 

r . = / 7 V ^ e - ' (4.3.2) 
dr 

where t] is the complex viscosity of the fluid. 

Substituting equations (4.3.1) and (4.3.2) into the relevant stress equations of motion (Bird 

et a/ [I]) and noting that the flow is axisymmetric we obtain the second order ordinary 

differential equation 

d_ 

dr dr 
+ aV7 ( r ) = 0 (4.3.3) 
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where is defined in equation (4.2.4) 

On considering equation (4.3.1) it can be shown that the function / ( r ) is subject to the 

boundary conditions 

f{r,) = e,i(o (4.3.4) 

f { 0 = e,icoe^ (4.3.5) 

Making the substitution g{r) = r f { r ) in equation (4.3.3) gives 

r ^ ^ ^ + ̂ ^ + ( a V - l M r ) = 0 (4.3.6) 
dr dr 

This is a parametric Bessel equation for which the general solution is known and therefore 

the solution of equation (4.3.3) is given by 

f ( r ) = -[AJ,{ca-)^BUar)\ (4.3.7) 
r 

where A and B are constants to be determined. 

On applying the boundary conditions of equations (4.3.4) and (4.3.5) to equation (4.3.7) the 

constants A and B are given by 

[J,(aO}^(aO-y,(arJ};(aO] 

^ ^ iw [g, r., J,(arJ - 6, r, J,{ar.,)] 

[)^(a0 7 , ( a r j - y , ( a r j y , ( a r i ) ] 

The equation of motion of the inner cylinder can be expressed as 

C^={K-Ico^)e,e''^ (4.3.10) 

where Cp is the torque exerted on the inner cylinder due to the motion of the fluid and / is 

the moment of inertia of the member constrained by the torsion bar. 

The torque exerted on the inner cylinder due to the motion of the fluid is given by 

C,=27rr^\Tj^_^dz (4.3.11) 
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On using equation (4.3.2) the torque Cp can be expressed as 

Cp=2rrhr'Tj 
dr 

Jot (4.3.12) 

From equation (4.3.7) we have 

^ =^[A{J,{ar,)-Mar,))^B{y,(ar,)-Y,(ar.,)}] 
dr „„ 2r 

(4.3.13) 

Using, equations (4.3.8) to (4.3.10), (4.3.12) and (4.3.13) and the properties of Bessel 

functions given in Appendix 4.1 the equation of motion of the inner cylinder can be 

expressed as 

6» 2r 

2Sr: 
{MardY,{ar^)-Y,{ar,)J,{ar^)) (4.3.14) 

where 5 is a geometrical parameter given by 

S = 
{rl-r^){K-I<o') (4.3.15) 

and i9 (= 6J6^) is defined as the amplitude ratio 

On a Weissenberg rheogoniometer the frequency (o, amplitude ratio 9 , phase lag c 

and geometrical parameter S are ail known quantities. Therefore a , and hence the complex 

viscosity rf ^ can be obtained from the solution to equation (4.3.14). This equation, which 

includes full fluid inertia effects, is non-linear in terms of a and a full solution can only be 

obtained using a suitable numerical iterative technique. However iterative methods of 

solution may lead to incorrect complex viscosity predictions. Therefore, as for the parallel 

plate geometry, we shall consider solving equation (4.3.14) using a perturbation method 
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which will be valid for the case when fluid inertia effects are small. Formulae will be 

produced from the perturbation theory which can be incorporated into the rheogoniometer 

software to provide an on line correction of concentric cylinder complex viscosity data for 

first and second order fluid inertia effects. 

4.3.2 Perturbation method of solution to predict complex viscosity 

Equation (4.3.14) is the equation of motion of the inner cylinder and on using 

equation (4.2.4) it can be expressed as 

& 2r 
a{Uar,)Y,{ar^)-Y,(ar,)Mar^)) 

(4.3.16) 

For concentric cylinder oscillatory shear flows in which fluid inertia effects are small 

we consider a Taylor series expansion of equation (4.3 .16) in terms of the non-dimensional 

parameter ar^ about the point ar^ =0. On working to second order terms in the non-

dimensional parameter {ar^Y the right hand side of equation (4.3.16) can be expanded to 

give 

9 rf 
BAC OAE (4.3.17) 

where 5, C, D and E are non-dimensional geometry dependent constants given by 

.2 _2 \2 

5 = 

c= 4in(^Aj+^-5r 
1 r. 
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E = 1 9 2 r \ ^ - r . ^ ) l ^ ' ° X ' - ^ lOr^V + 12r,V(r,^ +^/)ln(r7'-„)] (4.3.18) 

The equation of motion of the inner cylinder when fluid inertia effects are ignored is 

obtained from equation (4.3.17) by setting a = 0 and replacing rf with 77*, the complex 

viscosity when fluid inertia effects are ignored, to give 

(4.3.19) 
7o 

This equation is of identical form to the equation of motion for the upper plate of the 

parallel plate geometry when fluid inertia effects are ignored (equation (4.2.16)). However 

it should be noted that the definition of the geometrical parameter S is now given by 

equation (4.3.15). The complex viscosity rf^ when fluid inertia effects are ignored can 

therefore be calculated for the concentric cylinder geometry by using equation (4.2.17) with 

the geometrical parameter 5 defined in equation (4.3.15). Using equations (4.3.17), (4.3.19) 

and the definition of a\ in equation (4.2.20) we obtain a relationship between rfl and rj' 

given by 

iS_ 
( « o ' - o ) ^ - ^ 4 («0'-o) (4.3.20) 

In order to determine an expression for TJ' in terms of TJ^ from this equation we expand 

/;* as a second order power series in the non-dimensional parameter («„ r^)^ given by 

Tj' = n'o+(«on'l + («o ' ; ) ' ' nl 

On substitution of equation (4.3 .21) into equation (4.3 .20) we obtain 

iS_ 

'7o fJo 

(4.3.21) 

Vo Ho ^0 ''o 
(4.3.22) 
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where terms of order ( a , r„)* and higher have been neglected. 

Comparing coefficients of the (a^ r̂ )̂  terms we obtain 

V^ = -Ho (4.3.23) 

On comparing coefficients of the (a^rj* terms and using equation (4.3.23) we have 

^2 = -'/< ( C ^ - £ ) + % f i C - D ) (4.3.24) 

Substituting these expressions for 77* and 773 into equation (4.3.21) and using the definition 

of the non-dimensional geometry constants 5, C, D and E in equation (4.3.18) gives 

1 (4.3.25) 

where C , , C j , C3and are non-dimensional geometry dependent factors given by 

C. = 
2 „ 2 

o V o i ' 

(4.3.26) 

On using equation (4.2.20) we can express equation (4.3.25) as 

(4.3.27) 

Equation (4.3.27) is the formula for calculating the complex viscosity of a fluid which 

includes first and second order fluid inertia effects. In this equation it should be noted that 

I]Q is known from equation (4.2.17) where the geometrical parameter 5 is defined by 
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equation (4.3.15). It is also noted that the formulae in equations (4.2.18) and (4.2.19), to 

respectively calculate the zero order dynamic viscosity 1]^ and dynamic rigidity G^', can be 

used for the concentric cylinder geometry where the geometrical parameter S is defined by 

equation (4.3.15). In order to establish the limitations of the second order fluid inertia 

perturbation theory we shall simulate the oscillatory shear flow behaviour of a Newtonian 

fluid and a single element Maxwell fluid in the concentric cylinder geometry. This simulation 

will be presented in chapter 5. 

4.3.3 Complex viscosity prediction for a strain ĝ auge torsion head system on the 

Weissenberg rheogoniometer 

On a Weissenberg rheogoniometer instead of constraining the inner cylinder with a 

torsion bar it is possible to connect the inner cylinder to a strain gauge torsion head. As for 

the parallel plate geometry, we assume that the strain gauge is infinitely stiff and therefore 

the geometrical parameter 5 defined in equation (4.3.15) will also be infinite. A relationship 

between ;/* and r/* for oscillatory shear flow with a strain gauge torsion head is then 

obtained by combining equations (4.3.14) and (4.3.19) and setting 5 = oo to give 

«: = '"̂  (4.3.28) 

On setting 5 = oo in equation (4.3.25) we obtain the second order fluid inertia correction 

for complex viscosity data obtained using a strain gauge torsion head as 

7 - = / 7 ; [ l - C , ( a „ r J ^ - C , ( a „ r J ^ ] (4.3.29) 

where C,and Cj are defined in equation (4.3.26). 

I f the stiffness of the strain gauge is considered to be infinite we have the outer cylinder 

oscillating with small amplitude at a prescribed frequency and the inner cylinder stationary. 

This is similar to concentric cylinder oscillatory shear flow on a CSR controlled stress 
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rheometer, where the inner cylinder oscillates with small amplitude and the outer cylinder is 

stationary, which is now considered for comparison purposes. 

4.3.4 Complex viscosity prediction for a CSR controlled stress rheometer 

On a CSR controlled stress rheometer an oscillatory torque of amplitude and 

frequency/is applied to the inner cylinder, forcing it to make small amplitude oscillations of 

amplitude with a phase lag c behind the applied torque. The outer cylinder remains 

stationary. An equation of motion for the inner cylinder is determined by considering the 

torque exerted on the inner cylinder due to the motion of the fluid. The equations for CSR 

concentric cylinder oscillatory shear flow, given by Golden [21], can be used to obtain a 

relationship between //J and rf as 

2r: {AiaOY,{ar,)-Y,iaOJ,{ar,)} 
(4.3.30) 

Complex viscosity obtained from a CSR controlled stress rheometer can be corrected for 

second order fluid inertia effects using the expression (Golden [21]) 

rj' = ril[l^B,iaoO'+B,ia,rj'] (4.3.31) 

where B^ and are non-dimensional geometry dependent factors given by 

2rl An 

B.= 32r: 6r* 

(4.3.32) 

(4.3.33) 

The difference in complex viscosity data obtained from the Weissenberg 

rheogoniometer fitted with a strain gauge torsion head and the CSR controlled stress 

rheometer will be demonstrated by simulating the oscillatory shear flow behaviour of a 

Newtonian fluid and a single element Maxwell fluid in the concentric cylinder geometry on 
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each instrument. The simulated data, presented in chapter 5, will also used to establish the 

frequency range of applicability of the respective second order fluid inertia corrections given 

in equations (4.3.29) and (4.3.31). 

4.4 Cone and plate geometry 

4.4.1 Governing equations 

With reference to a set of spherical polar coordinates ir^O,q>) a viscoelastic fluid 

occupies the region between a cone of semi-vertical angle 0^ and a flat circular plate as 

shown in figure 4.3. The plate and the cone base are coaxial and both have radius a. As 

seen in figure 4.3 the tip of the cone is truncated to prevent contact between the cone and 

the plate. We denote the small angle between the cone and the plate by 0Q = (7r/2~$^). 

The plate is forced to perform small amplitude angular oscillations of amplitude 

frequency / (cycles/sec) about the z-axis. The resulting motion of the fluid causes the cone, 

which is constrained by a torsion bar of stiffness K, to perform small amplitude oscillations 

of amplitude y/^ with a phase lag c behind the motion of the plate. It is assumed that the 

amplitude of oscillation of the driven plate is sufficiently small to ensure that the flow is in 

the linear viscoelastic region and hence non-linear fluid inertia terms can be neglected in the 

relevant equations of motion. On neglecting edge effects we assume a velocity distribution, 

which satisfies the equation of continuity for incompressible fluids, of the form 

V, =0 . v ,=0 . y^=/{r,0)e'^ (4.4.1) 

where co = 27rf (radians/sec) is the angular frequency of oscillation and the real part of 

these quantities is implied. 

This velocity distribution gives two non-zero components of the shear stress tensor as 
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3 fir,6) 
- co t ^ / ( r . e ) 

df{r,&) f(r,e) 

dr r 

(4.4.2) 

(4.4.3) 

where t] is the complex viscosity of the fluid. 

Substituting equations (4.4.1) to (4.4.3) into the relevant stress equations of motion (Bird et 

al [11]) and noting that the flow is axi-symmetric we obtain the second order partial 

differential equation 

dr 

d f ( r , e ) 

dr r^sindde 
^in.^^(^'^>^ -4^^^a'nn0) = O (4.4.4) 

r sin^ 0 

where is defined in equation (4.2.4) 

On considering equation (4.4.1) it can be shown that the fijnction fir,6) is subject to the 

boundary conditions 

(4.4.5) 

/{r,7r/2) = rio)if/^e'' (4.4.6) 

Using the separation of variables method a general solution of equation (4.4.4) has been 

obtained by Nally [ 18] as 

/ ( r , ^ ) = r - ^ | ; k y ' ; ( c o s ^ ) + 5 „ e : ( c o s ^ ) ] y ^ ^ ( a r ) (4.4.7) 

where P^(cosO) and Ql(cosO) are associated Legendre functions of the first and second 

kind respectively of degree n and order 1 and J^y{ar) is a Bessel function of the first 

kind of order (//+1/2). In equation (4.4.7) A„ and B^ are arbitrary constants to be 

determined from the boundary conditions in equations (4.4.5) and (4.4.6). 

From Watson [22] a series expansion for ( a r ) ^ can be expressed in the form 
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(4.4.8) 

In this equation the coefficients a„ are given by 

2^(/i + l/2)r(l+/>/2) 

{ ( « - l ) / 2 ) . 
(4.4.9) 

where f is the Gamma fijnction (Abramowitz and Stegun [23]). 

Using equations (4.4.6) and (4.4.8) the boundary condition for the plate can be expressed as 

/ ( r , ; r /2) = r - V ^ / 6 ; V ' 3 e ' ^ X a „ y ( a r ) (4.4.10) 
rt=1.3... 

Similariy the boundary condition for the cone can be written in the form 

/ ( ^ ^ . ) = r ' ^« '^ '6 )V^ ,s in^ , Z ''n^„.y^i<^'') 

n=1.3... 

(4.4.11) 

On using equations (4.4.10) and (4.4.11) with the general solution in equation (4.4.7) the 

constants and are given by 

n n 

A 

a.Id) 

a 

g;(cosgJ - sin 6, g:(cos-/) 

K (cos '/^ Q: (COS e;) - Pi (cos 6,) Q\ (cos 

sin e, y/, y^„'(cos^) - K(cosg,) 

/ ' : (cos '^ )e : (cos^ j -p„ ' (cos^, )g : (cos ' / ) 

for n even 

for /I odd 

for /; odd 

(4.4.12) 

(4.4.13) 

(4.4.14) 

Hence the general solution in equation (4.4.7) becomes 

/ ( r . ^ ) = r->^ f;[/I,/ '„ '(cos^) + 5 „e : (cos^ ) ] j . ^ (Qr r ) (4.4.15) 

where A„ and B^ are given in equations (4.4.13) and (4.4.14) respectively. 

The equation of motion of the cone can be expressed as 

(4.4.16) 

where is the torque exerted on the cone due to the motion of the fluid and / is the 
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moment of inertia of the member constrained by the torsion bar. 

The torque Cp exerted on the cone due to the motion of the fluid is given by 

C ^ = 2 ; r s i n ^ ^ , | V r ^ L ^ / / - (4.4.17) 

Abramowitz and Stegun [23] give the result 

d 
de 

p^(cose)-coiop;iicose) = p:icose) (4.4.18) 

Substituting equations (4.4.13) to (4.4.15) into equation (4.4.2) and using equation (4.4.18) 

we have 

(4.4.19) 

where D„ and F„ are given by 

D. 

F = 

Qlicosej P^cosOJ - P: {cose J QI (COS^J 

^„ ' (cos'^e:(cos^J 

sinO, 

(4.4.20) 

(4.4.21) 

On using equations (4.4.16), (4.4.17) and (4.4.19) the equation of motion of the cone can 

be expressed as 

where 

"9 „=u.. rj M 

a 

(4.4.22) 

(4.4.23) 

(4.4.24) 

5 is a geometrical parameter given by 

S = (4.4.25) 
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and i9 (= y/Jy/2) defined as the amplitude ratio. 

If an oscillatory shear experiment is performed on a Weissenberg rheogoniometer the 

angular frequency o, amplitude ratio S , phase lag c and geometrical parameter S will all 

be knov^. Therefore in theory a, and hence the complex viscosity 77', can be obtained by 

solving equation (4.4.22). A full solution to this equation, which includes full fluid inertia 

effects, can be obtained using a suitable numerical iterative technique. However equation 

(4.4.22) has multiple solutions and therefore iterative methods cannot be guaranteed to give 

convergence to the correct solution. We shall therefore solve this equation using a 

perturbation method which will be valid for the case when fluid inertia effects are small and 

the cone angle is small {9^ < 4*). Formulae will be produced from the perturbation theory 

which can be incorporated into the rheogoniometer software to provide an on line 

correction of cone and plate complex viscosity data for first and second order fluid inertia 

effects. 

4.4.2 Perturbation method of solution to predict complex viscosity 

In order to solve equation (4.4.22) using a perturbation method, we must express 

this equation in the form of a power series expansion in terms of the non-dimensional 

quantity {aay. On working to second order terms in the non-dimensional quantity (aa)^ 

we consider an expansion of equation (4.4.22) in the form 

e b,-^b,iaay^b,iaay^..] = ~^~^^ +c,(aa)^+c,(aa)V. . . ] (4.4.26) 

where the coefficients and c- for i = 0,2,4 are to be determined. 

From equations (4.4.20) to (4.4.25) it can be seen that a only appears within the 

terms. We therefore consider a Taylor series expansion for in terms of the non-

dimensional quantity (aa)^ about the point a a = 0. Up to terms of order {aaY we have 
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0 =a\f^\--—{aaf +—(aa) 
^' \nV9 150^ ' 5880^ ' 

{aar 1 , o 1 
- ( « « ) - — 

p -a\\^\-}—{aay 
\n 72765^ ^ 

(4.4.27) 

(4.4.28) 

(4.4.29) 

It should be noted that since we are only considering terms up to order {aaY we have 

P„=0 for / I > 7 . Therefore only the first three terms ( / i =1,3,5) need to be considered in 

equation (4.4.22). On considering equation (4.4.22) and equations (4.4.27) to (4.4.29) the 

coefficients b- and C; (for i = 0 ,2 ,4 ) in equation (4.4.26) are given by 

Co=a^V2 / ^ ( l / 9a , f ; ) 

= a^yj2/^{-\/\50a, D, + 1/525^3 D,) 

^ = a ' ^ 2 / ^ (l/5870a, -1/13230^3 + ]/72765a^ A) 

c, = a^^pjn (l/5870a, F, - 1/I3230a3 F^ + \/72165a, F,) (4.4.30) 

Substituting these coefficients into equation (4.4.26) and expanding the resulting equation 

as a Taylor series in terms of the small cone angle about the angle 6o = 0 gives 

B-!^c\{aay^\D-^E iaay (4.4.31) 

where terms of order {aaY and higher have been neglected. 

In this equation A.B^C, D and E are non-dimensional geometry dependent constants given 

by 

B = —9l+—e 
10 " 10 
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10 ° 300 
£) = 1400 

E = 1 -4 
0 

600 
(4.4.32) 

where terms of order 6l and higher are considered small enough to be neglected. 

The equation of motion of the cone when fluid inertia effects are ignored is obtained from 

equation (4.4.31) by setting a = 0 and replacing rj' with the complex viscosity when 

fluid inertia effects are ignored, to give 

iS (4.4.33) 

For a cone of small angle (0^ <4° ) . terms of order $1 and higher in the non-dimensional 

geometry dependent constant A are considered small enough to be neglected (i.e. A = \). 

Therefore the equation of motion of the cone when fluid inertia effects are ignored reduces 

to equation (4.2.16), where the geometrical parameter S is defined by equation (4.4.25). 

The complex viscosity TJI , when fluid inertia effects are ignored, can then be calculated for 

the cone and plate geometry by using equation (4.2.17) with S defined in equation (4.4.25). 

Using equations (4.4.31), (4.4.33) and the definition of al in equation (4.2.20) we 

obtain a relationship between rjl and 77* given by 

.2 
5o ( a „ a ) ^ + ^ 
V L 

( « o « y (4.4.34) 

In order to determine an expression for 17* in terms of rjg from this equation we expand 

77* as a second order power series in the non-dimensional parameter (a^ a)^ given by 

On substitution of equation (4.4.35) into equation (4.4.34) we obtain 

(4.4.35) 
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iS 

A = -Vo '7o I Vo 

iS 

(a, ay 

• 2 

Vo //o ''o 
(4.4.36) 

where terms of order (a^ a)^ and higher have been neglected. 

The coefficients of the {a^^aY and {a^aY terms in equation (4.4.36) are of identical form 

to the coefficients of the {cCf^r^y and {a^ r̂ )** terms in equaiion (4.3.22) for the concentric 

cylinder geometry. Hence in equation (4.4.35) 77* and ri\ are given by equations (4.3.23) 

and (4.3.24) respectively, where the non-dimensional geometry dependent constants B, C, 

D and E are now defined by equation (4.4.32). Substituting these expressions for TJ^ and 

7j] into equation (4.4.35) and using equation (4.4.32) gives 

V '=Vo \-eu—+ 
1 . 'Vl 3 

10 s 10 

I . iVo 1 
120 S 56 

(4.4.37) 

In forming this equation terms of order 0^ and higher in the coefficient of the (UQ aY term 

are considered small enough to be neglected. Similariy terms of order 6^ and higher are 

considered small enough to be neglected in the coefficient of the {a^aY term. On using 

equation (4.2.20) we can express equation (4.4.37) as 

p V a X f 1 / T i l l 
S lOj Vo 

'Vl 1 
120 S 56 

(4.4.38) 

Equation (4.4.38) is the formula for calculating the complex viscosity of a fluid which 

corrects for first and second order fluid inertia effects. In this equation it should be noted 

that, for small cone angles (^o^4'), 77̂  is known from equation (4.2.17) where the 

geometrical parameter S is defined by equation (4.4.25). It is also noted that the formulae in 

equations (4.2.18) and (4.2.19), to calculate the zero order dynamic viscosity TJQ* and 
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dynamic rigidity G^' respectively, can be used for the cone and plate geometry with the 

geometrical parameter S defined by equation (4.4.25). In order to establish the limitations of 

the second order fluid inertia perturbation theory we shall simulate the oscillatory shear flow 

behaviour of a Newtonian fluid and a single element Maxwell fluid in the cone and plate 

geometry. This oscillatory shear flow simulation will be presented in chapter 5. 

4.4.3 Complex viscosity prediction for a strain gauge torsion head system on the 

Weissenberg rheogoniometer 

On a Weissenberg rheogoniometer instead of constraining the cone with a torsion 

bar it is possible to connect the cone to a strain gauge torsion head. As before we consider 

the strain gauge to have infinite stiffness (K = oo) and therefore the geometrical parameter 

S defined in equation (4.4.25) will be infinite. For this type of oscillatory shear flow a 

relationship between 7 7 * and 7' is obtained by combining equations (4.4.22) and (4.4.33) 

(with .4 = 1) and setting S = 00 to give 

ri>ri'M±a„D„p„ (4.4.39) 
1=1.3„ 

Setting = 00 in equation (4.4.37) gives the second order fluid inertia correction formula 

for complex viscosity data obtained using a strain gauge torsion head as 

V ='7o (4.4.40) 

If the stiffness of the strain gauge is considered to be infinite we have the flow situation 

where the plate oscillates with small amplitude at a prescribed frequency and the cone is 

stationary. This is similar to cone and plate oscillatory shear flow on a CSR controlled stress 

rheometer, where the cone oscillates with small amplitude and the plate is stationary. 

Oscillatory shear flow on a CSR controlled stress rheometer is now considered for 

comparison purposes. 

54 



4.4.4 Complex viscosity prediction for a C S R controlled stress rheometer 

On a CSR controlled stress rheometer an oscillatory torque of amplitude and 

frequency / is applied to the cone forcing, it to make small amplitude oscillations of 

amplitude XQ with a phase lag c behind the applied torque. The plate remains stationary. 

An equation of motion for the cone is determined by considering the torque exerted on the 

cone due to the motion of the fluid. The equations for cone and plate oscillatory shear flow 

on a CSR controlled stress rheometer are given by Golden [21]. On using these equations 

we obtain a relationship between and TJ' as 

nl = vM±a„F,p, (4.4.41) 
'•=1.3.. 

where a„, F^, M and P„ are defined in equations (4.4.9), (4.4.21). (4.4.23) and (4.4.24) 

respectively. 

An expression to correct complex viscosity data obtained from a CSR controlled stress 

rheometer for second order fluid inertia effects is given by Golden [21] as 

^7=70 (4.4.42) 
5^ " 105 

In chapter 5 the difference in complex viscosity predictions obtained from the 

Weissenberg rheogoniometer fitted with a strain gauge and the CSR controlled stress 

rheometer will be demonstrated by simulating the oscillatory shear flow behaviour of a 

Newtonian fluid and a single element Maxwell in the cone and plate geometry on each 

instrument. The simulated data is also used to establish the frequency range of applicability 

of the respective second order fluid inertia corrections given in equations (4.4.40) and 

(4.4.42). 
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4.5 Inaccuracies in complex viscosity predictions near the natural frequency of the 

constrained member 

The member constrained by the torsion bar has a natural angular frequency of 

oscillation denoted co^. When subjected to a displacement and released this member will 

oscillate freely at the natural frequency which is equal in magnitude to the quantity -JK/I . 

At the natural frequency OQ we therefore have (K-Ico^) = 0 and hence for all three 

geometries considered the geometrical parameter S is equal to zero. As an example we 

consider the equations for the parallel plate geometry when o) = 0}^,. 

From equation (4.2.12) it can be seen that at the natural frequency the equation of 

motion of the upper plate reduces to 

y = cos(a/») (4.5.1) 

Therefore for parallel plate oscillatory shear flows in which fluid inertia effects are small 

{i.e.ah^O) we have e'^/S ^ 1 at the natural frequency. The complex viscosity when 

fluid inertia effects are ignored, is calculated using the value of the geometrical parameter S 

and the measured quantity e"'/i9 in equation (4.2.17). At the natural frequency CJQ the 

right hand side of this equation is not defined and hence //^ cannot be determined at this 

frequency. For frequencies of oscillation close to the natural frequency we will also obtain 

5 « 0 and e'̂ /iP « 1 and hence small errors in these quantities can lead to large errors in 

complex viscosity predictions (Walters [3]). 

4.6 Comments 

Second order fluid inertia corrections have been produced for complex viscosity 

data obtained using a strain gauge torsion head on the Weissenberg rheogoniometer. When 

a strain gauge torsion head is used, it is assumed in the oscillatory shear theory that the 
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upper platen of the geometry is stationary as the lower platen performs small amplitude 

oscillations. This is in contrast to the oscillatory shear flow conditions on a CSR controlled 

stress rheometer where the upper platen of the geometry performs small amplitude 

oscillations and the lower platen is stationary. It has previously been noted that the torque is 

measured on the stationary platen on the Weissenberg rheogoniometer whereas on the CSR 

rheometer the torque is measured on the moving plate. For a given fluid and geometry there 

will be a difference between the complex viscosity Vo» when fluid inertia effects are 

ignored, obtained from each instrument. It has also been noted that for a given geometry the 

second order fluid inertia corrections for each instrument are different. However a 

relationship, which applies for all three geometries, has been observed between the second 

order corrections for the two instruments. 

For all three geometries, on both instruments, the second order fluid inertia 

corrections are expressed as a power series in terms of a non dimensional parameter that we 

shall denote by Note that the non dimensional parameter is equal to (a^h), (a^r^) 

and (a^aOfj) for the parallel plate, concentric cylinder and cone and plate geometries 

respectively. When the upper platen is constrained by a strain gauge on the Weissenberg 

rheogoniometer the second order fluid inertia corrections, for all three geometries, can be 

expressed in the form 

7j*=rjl[\+W^ N^-hW^ N'] (4.6.1) 

where and are non-dimensional geometry dependent factors. 

Similarly on the CSR controlled stress rheometer the second order fluid inertia corrections, 

for all three geometries, can be expressed as 

rj' = rjl[\+QN'-^C,N'] (4.6.2) 

where C, and Q are non-dimensional geometry dependent factors. 
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From the fluid inertia corrections previously determined it can be seen that for both the 

parallel plate and cone and plate geometries we have W^/C, =-1/2 and W^/C^ =-7/8. 

Furthermore on considering a very narrow gap concentric cylinder geometry we obtain 

Lim W^/C, =-1/2 and Lim W^/C2=-7/8. It should be emphasised that for a given 

geometry the value of rj^, and hence the value of in equations (4.6.1) and (4.6.2), which 

is obtained from each instrument will be different. However the W-J/C, and W^jC^ ratios 

indicate that a relationship, which applies for all three geometries, exists between the second 

order fluid inertia corrections on each instrument. 
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CHAPTER 5 

S I M U L A T I O N O F O S C I L L A T O R Y S H E A R F L O W O N A 

W E I S S E N B E R G R H E O G O N I O M E T E R AND A C S R C O N T R O L L E D 

S T R E S S R H E O M E T E R 

5.1 Introduction 

In this chapter we simulate the small amplitude oscillatory shear flow behaviour of 

theoretical model fluids, for which the complex viscosity and density are known, on a 

Weissenberg rheogoniometer. Simulations are performed for the parallel plate, concentric 

cylinder and cone and plate geometries. 

For a Newtonian fluid and a single element Maxwell fluid the complex viscosity of 

the fluid is given by TJ^ = T J ^ and rf = T]J{\-\-iX6}) respectively, where t/̂  is the 

Newtonian viscosity and X is the relaxation time. The complex viscosity of these theoretical 

model fluids will be referred to as the exact viscosity data throughout this chapter. At a 

prescribed frequency of oscillation the amplitude ratio ,9 and phase lag c for the theoretical 

model fluids can be calculated analytically. Using these calculated values the complex 

viscosity rf^ when fluid inertia effects are ignored can be analytically determined. This 

complex viscosity data is equivalent to the data that would be obtained from the 

rheogoniometer software which ignores fluid inertia effects. On comparing the analytically 

simulated ;/* data with the exact viscosity data for the theoretical model fluids we can 

establish the influence of fluid inertia effects on complex viscosity predictions. The complex 

viscosity prediction can be corrected for first and second order fluid inertia effects using the 

correction formulae determined in chapter 4. Since the exact viscosity data is known we can 

consider the fi-equency range of applicability of the second order fluid inertia corrections for 

the theoretical model fluids. In this chapter we shall discuss both complex viscosity data 
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corrected for first order fluid inertia effects and complex viscosity data corrected for second 

order fluid inertia effects. It should be noted that if data is corrected for second order fluid 

inertia effects then it is implied that first order fluid inertia effects are also included. 

For each geometry the simulations will be performed for the oscillatory shear flow 

situations where the upper platen is constrained by a torsion bar and the upper platen is 

connected to a strain gauge torsion head. Simulations are also considered for the oscillatory 

shear flow of a Newtonian fluid and a single element Maxwell fluid on the CSR controlled 

stress rheometer. The complex viscosity data obtained from these simulations will be 

compared to the corresponding simulated data obtained for a Weissenberg rheogoniometer 

with the upper platen connected to a strain gauge torsion head. 

5.2 Parallel plate geometry constrained by a torsion bar 

We simulate the oscillatory shear flow behaviour of a Newtonian fluid and a single 

element Maxwell fluid in the parallel plate geometry where the upper plate is constrained by 

a torsion bar. At a prescribed angular frequency of oscillation co the known fluid 

parameters (TJ\ p) and geometry parameters (a, h, I, K) can be used in equation (4.2.12) 

to evaluate the expression <?'7«9 analytically. On using this value in equation (4.2.17) the 

complex viscosity / / J , when fluid inertia effects are ignored, is then known. It is noted that 

this simulated complex viscosity data is equivalent to the data obtained when the 

rheogoniometer software does not include fluid inertia effects. The simulated //J data can 

then be used in equation (4.2.27) to correct the complex viscosity prediction for first and 

second order fluid inertia effects. 

For the simulations we consider a parallel plate geometry in which the coaxial plates 

have radius a = 37-5 mm and are separated by a vertical distance h = 500pm. The upper 

plate is constrained by a torsion bar of stiffness = 5-005 Nm / rad and the member 
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constrained by this torsion bar has moment of inertia / = 164 /^Ns^. For these values of K 

and / the member constrained by the torsion bar will have a natural angular frequency of 

= 174.695 rad/s 

5.2.1 Newtonian fluids 

For a given parallel plate geometry and torsion bar {i.e. a, /, K known) it can be 

shown that the normalised complex viscosity (//'/^o) ^ Newtonian fluid can be 

represented as a function of the two non-dimensional quantities R(= ph^eoQ/rj^) and the 

normalised frequency { O J / C O Q ) . We simulate the oscillatory shear flow behaviour of 

Newtonian fluids over the angular frequency range 0<O)<2(OQ. 

In figures 5.1 and 5.2 we present fluid inertia corrections for simulated dynamic 

viscosity and dynamic rigidity data respectively of a Newtonian fluid when R = 2. The 

uncorrected data in these figures is obtained from the standard formula (equation (4.2.17)) 

in which fluid inertia effects are ignored. Figures 5.1 and 5.2 also include data corrected for 

first order fluid inertia effects and data corrected for second order fluid inertia effects. It is 

seen in figure 5.1 that the first order fluid inertia correction for dynamic viscosity gives very 

little improvement in accuracy over the uncorrected data. However when corrected for 

second order fluid inertia effects, good agreement is obtained with the exact dynamic 

viscosity data over the ftjU normalised frequency range considered. Figure 5.2 shows an 

apparent positive dynamic rigidity when fluid inertia effects are ignored and an apparent 

negative dynamic rigidity when fluid inertia effects are included in the theory. It should be 

noted that in this figure a more accurate prediction of the dynamic rigidity is obtained when 

the data is only corrected for first order fluid inertia effects. Correcting for second order 

fluid inertia effects increases the error in the dynamic rigidity prediction. Therefore for 

Newtonian fluids higher order fluid inertia terms may need to be considered in order to 
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obtain improved dynamic rigidity predictions. This will be discussed in section 5.8. In figure 

5.2 it is seen that the first order fluid inertia correction and the second order fluid inertia 

correction give good agreement with the exact dynamic rigidity data up to normalised 

frequencies of I and 0-6 respectively. It is noted that in figure 5.1, the corresponding second 

order fluid inertia correction for dynamic viscosity data gives good agreement with the 

exact data over the full normalised frequency range considered. 

We now consider the normalised frequency range of applicability of the second 

order fluid inertia corrections for various values of the non-dimensional quantity R. The 

dynamic viscosity and dynamic rigidity corrections are presented in figures 5.3 and 5.4 

respectively. It can be seen in figure 5.3 that when R has a value below 8 good agreement is 

obtained with the exact dynamic viscosity data up to normalised frequencies of 0-7. 

However the corresponding dynamic rigidity data in figure 5.4 shows that when R has a 

value below 8 good agreement with the exact data is only obtained up to a normalised 

frequency of 0-2. If R has a value below 2 then the dynamic viscosity data is in good 

agreement with the exact data up to a normalised frequency of 2, whereas the 

corresponding dynamic rigidity data only gives good agreement for normalised frequencies 

below 1. In figures 5.3 and 5.4 it is seen that for all values of R, the second order fluid 

inertia correction for dynamic viscosity gives good agreement with the exact data up to a 

higher normalised frequency than the corresponding correction for dynamic rigidity. 

5.2.2 Single element Maxwell fluids 

For a given parallel plate geometry and torsion bar {i.e. a, h, / , K known) it can be 

shown that the normalised complex viscosity ( T J ' / T J Q ) of a single element Maxwell fluid, 

with a specific relaxation time A, can be represented as a flmction of the two non-

dimensional quantities R{= P ^ ^ O J Q / T J Q ) and the normalised frequency ( C O / C O Q ) . We 
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consider the oscillatory shear flow behaviour of single element Maxwell fluids over the 

frequency range 0<a)<26}Q and choose the relaxation time Z such that A ŷ̂  = 1. 

In figures 5.5 and 5.6 we present fluid inertia corrections for simulated dynamic 

viscosity and dynamic rigidity data respectively of a single element Maxwell fluid when 

R = \. In these figures we present the uncorrected data (obtained from equation (4.2.17)), 

data corrected for first order fluid inertia effects and data corrected for second order fluid 

inertia effects. It is seen in figure 5.5 that first and second order fluid inertia effects are not 

very significant in dynamic viscosity predictions, except when close to the natural frequency 

{O)/(OQ = 1). However the corresponding dynamic tngidity data in figure 5.6 shows that both 

first order and second order fluid inertia effects are important in dynamic rigidity 

predictions. In this figure it is seen that the first order fluid inertia correction gives good 

agreement with the exact dynamic rigidity data up to normalised frequencies of 0-6 and 

correcting for second order fluid inertia effects gives good agreement up to a normalised 

frequency of 1-2. 

We now consider the normalised frequency range of applicability of the second 

order fluid inertia corrections for various values of the non-dimensional quantity R. The 

dynamic viscosity and dynamic rigidity corrections are presented in figures 5.7 and 5.8 

respectively. It can be seen in these figures that when R has a value below 4 good 

agreement with the exact data is obtained up to normalised frequencies of 0-3. However if 7? 

has a value below 1 then good agreement is obtained with the exact data up to a normalised 

frequency of 1-6. In figures 5.7 and 5.8 it is seen that for all values of R the second order 

fluid inertia corrections for dynamic viscosity and dynamic rigidity both give agreement with 

the exact data up to approximately the same normalised frequency. It should be noted that 

this was not the case for Nevytonian fluids where the second order fluid inertia correction 

for dynamic viscosity data is valid up to higher normalised frequencies than the 

63 



corresponding correction for dynamic rigidity data. 

5.3 Parallel plate geometry connected to a strain gauge torsion head 

We simulate the oscillatory shear flow behaviour of a Newtonian fluid and a single 

element Maxwell fluid in the parallel plate geometry, where the upper plate is connected to 

a strain gauge torsion head. It is noted that when a strain gauge torsion head is used the 

upper plate is assumed to be stationary. For comparison purposes the oscillatory shear flow 

behaviour of a Newtonian fluid and a single element Maxwell fluid is also simulated for the 

parallel plate geometry on a CSR controlled stress rheometer. At a prescribed lower plate 

angular frequency of oscillation co the known fluid parameters ( 7 7 * , p) and the geometry 

parameters (a, h) can be used in equation (4.2.28) and the complex viscosity 7 7 " , when fluid 

inertia effects are ignored, is then known. Similarly at a prescribed upper plate angular 

frequency of oscillation co the known geometry and fluid parameters can be used in 

equation (4.2.30) and the complex viscosity 7 7 * , when fluid inertia effects are ignored, for a 

CSR controlled stress rheometer is also known. Using the two sets of simulated 7 7 * data 

and the exact viscosity data the influence of fluid inertia effects on complex viscosity 

predictions for each instrument can be compared. The simulated 7 7 ^ data can be used to 

correct the complex viscosity prediction for first and second order fluid inertia effects using 

equations (4.2.29) and (4.2.31) respectively. Therefore the frequency range of applicability 

of the second order fluid inertia corrections given in equations (4.2.29) and (4.2.31) can be 

established for the theoretical model fluids. 

As before we consider a parallel plate geometry in which the coaxial plates have 

radius a = 37-5 mm and are separated by a vertical distance h = 500^m. 
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5.3.1 Newtonian fluids 

For a Newtonian fluid in a given parallel plate geometry (i.e. a, h known) it can be 

shown that, on both the Weissenberg rheogoniometer fitted with a strain gauge and the 

CSR controlled stress rheometer, the normalised complex viscosity ( T / V ' / O ) 

represented as a function of the non-dimensional normalised frequency (= p h'^cojr]^ . 

In figures 5-9 and 5-10 we present fluid inertia corrections for simulated dynamic 

viscosity and dynamic rigidity data respectively of a Newtonian fluid on both the 

Weissenberg rheogoniometer fitted with a strain gauge and the CSR controlled stress 

rheometer. These figures include, for both instruments, uncorrected data and data corrected 

for second order fluid inertia effects. It is noted that the uncorrected data in these figures is 

obtained from equations (4.2.28) and (4.2.30) for the Weissenberg rheogoniometer and the 

CSR controlled stress rheometer respectively. From equations (4.2.29) and (4.2.31) it can 

be seen that, for both instruments, the dynamic viscosity data is not influenced by first order 

fluid inertia effects. Therefore first order fluid inertia corrections are only presented for the 

dynamic rigidity data in figure 5.10. In figure 5.9 it is seen that the Weissenberg 

rheogoniometer dynamic viscosity data corrected for second order fluid inertia effects gives 

good agreement with the exact data up to a normalised frequency of 6. However in this 

figure the corresponding CSR controlled stress rheometer dynamic viscosity data corrected 

for second order fluid inertia effects is only in good agreement for normalised frequencies 

below 1-5. Figure 5.10 shows that when fluid inertia effects are ignored an apparent positive 

dynamic rigidity is obtained on the Weissenberg rheogoniometer and an apparent negative 

dynamic rigidity is obtained on the CSR controlled stress rheometer. In this figure it is also 

seen that the Weissenberg rheogoniometer second order fluid inertia correction for dynamic 

rigidity only gives good agreement with the exact data for normalised frequencies below 

1-5, whereas the corresponding correction for the CSR controlled stress rheometer is in 

65 



good agreement up to a normalised frequency of 5. It is noted that the Weissenberg 

rheogoniometer dynamic rigidity data presented in figure 5.10 is more accurate if only first 

order fluid inertia effects are included. Correcting for second order fluid inertia effects 

introduces greater inaccuracies in the dynamic rigidity prediction. This behaviour is 

consistent with the results presented in figure 5.2 for Newtonian fluids where the parallel 

plate geometry is used with a torsion bar on the Weissenberg rheogoniometer. From the 

second order fluid inertia corrections presented in figures 5.9 and 5.10, it can be concluded 

that for dynamic viscosity predictions the Weissenberg rheogoniometer gives good 

agreement with the exact data up to higher normalised frequencies than the CSR controlled 

stress rheometer. However for dynamic rigidity predictions good agreement with the exact 

data is obtained up to higher normalised frequencies by the CSR controlled stress 

rheometer. 

5.3.2 Single element Maxwell fluids 

For a single element Maxwell fluid in a given parallel plate geometry (i.e. a and h 

known) it can be shown that, on both the Weissenberg rheogoniometer filled with a strain 

gauge and the CSR controlled stress rheometer, the normalised complex viscosity (^'/^o ) 

can be represented as a fijnclion of the two non-dimensional quantities R{= ph^ /(^Vo)) 

and the Deborah number De (= Aco). 

In figures 511 and 5-12 we present fluid inertia corrections for simulated dynamic 

viscosity and dynamic rigidity data respectively of a single element Maxwell fluid when 

R = 0'5. Data is presented for both the Weissenberg rheogoniometer fitted with a strain 

gauge torsion head and the CSR controlled stress rheometer. Figures 5.11 and 5.12 include, 

for both instruments, uncorrected data (obtained using equations (4.2.28) and (4.2.30)) and 

data corrected for second order fluid inertia effects. Dynamic rigidity data corrected for first 
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order fluid inertia effects is also presented in figure 5.12. It is seen in figure 5.11 that when 

fluid inertia effects are ignored the dynamic viscosity is underestimated by the Weissenberg 

rheogoniometer and overestimated by the CSR controlled stress rheometer. However it 

should be noted that the error in dynamic viscosity predictions when fluid inertia effects are 

ignored is relatively small over the Deborah number range considered. In figure 5.12 it is 

seen that when fluid inertia effects are ignored the dynamic rigidity is overestimated by the 

Weissenberg rheogoniometer and underestimated by the CSR controlled stress rheometer. 

The error in dynamic rigidity predictions when fluid inertia effects are ignored is significant 

and it is seen that, for both instruments, correcting for second order fluid inertia effects 

gives good agreement with the exact data up to Deborah numbers of 1-6. It is noted that for 

both instruments, the corresponding dynamic viscosity data corrected for second order fluid 

inertia effects is also in good agreement with the exact data up to Deborah numbers of 1.6, 

as shown in figure 5.11. 

We now consider the Deborah number range of applicability of the second order 

fluid inertia corrections for various values of the non-dimensional quantity /?, for both the 

Weissenberg rheogoniometer fitted with a strain gauge and the CSR controlled stress 

rheometer. The dynamic viscosity and dynamic rigidity corrections are presented in figures 

5.13 and 5.14 respectively. It can be seen in these figures that when R has a value below 4 

good agreement with the exact viscosity data is obtained up to Deborah numbers of 0-3 for 

both instruments. However if R has a value below 0-5 then good agreement is obtained with 

the exact viscosity data, for both instruments, up to Deborah numbers of 1 -6. 

5.4 Concentric cylinder geometry constrained by a torsion bar 

The oscillatory shear flow behaviour of a Newtonian fluid and a single element 

Maxwell fluid is simulated in the concentric cylinder geometry, where the inner cylinder is 
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constrained by a torsion bar. At a prescribed outer cylinder angular frequency of oscillation 

0} the known fluid parameters ( 7 7 ' , p ) and the geometry parameters (r j , , / ? , / , AT) can be 

used in equation (4.3.14) to evaluate the expression e''/9 analytically. On using this value 

in equation (4.2.17), where the geometrical parameter S is given by equation (4.3.15), the 

complex viscosity 7 7 ^ , when fluid inertia effects are ignored, is then known. This value of 

7o can then be used in equation (4.3.27) to obtain the complex viscosity prediction which 

includes first and second order fluid inertia effects. 

• For the simulations we consider a concentric cylinder geometry with the dimensions 

r, = 15 mm , = 20-75 mm and h = 50 mm . This geometry is commercially available for 

the CSR controlled stress rheometer (TA Instruments [24]) and attachments have been 

manufactured, at the University of Plymouth, which enable it to be used on a Weissenberg 

rheogoniometer. For the concentric cylinder simulations we choose the moment of inertia of 

the member constrained by the torsion bar to be / = 164//Ns^ and a torsion bar of stiffness 

K ~5-005 Nm/ rad . It is noted that these values are identical to those used for the parallel 

plate geometry simulations and the natural frequency of the member constrained by the 

torsion bar is 0}Q = \14- 695 rad / s. 

5.4.1 Newtonian fluids 

For a given concentric cylinder geometry and torsion bar {i.e. r., , h, / , K known) 

it can be shown that the normalised complex viscosity (77*777^ ) of a Newtonian fluid can be 

represented as a function of the two non-dimensional quantities R (= p ^I^COQ/TJJ^) and the 

normalised frequency {cojco^). As for the parallel plate simulations we consider the 

oscillatory shear flow behaviour of Newtonian fluids over the frequency range 0<(O <2COQ. 

In figures 5.15 and 5.16 we present fluid inertia corrections for simulated dynamic 
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viscosity and dynamic rigidity data respectively of a Newtonian fluid when R=\0. The 

uncorrected data in these figures is obtained from equation (4.2.17) where the geometrical 

parameter S is defined by equation (4.3.15). Figures 5.15 and 5.16 also include data 

corrected for first order fluid inertia effects and data corrected for second order fluid inertia 

effects. It is seen in figure 5.16 that an apparent positive dynamic rigidity is obtained when 

fluid inertia effects are ignored and if first and second order fluid inertia effects are included 

in the theory we obtain an apparent negative dynamic rigidity, except near the natural 

frequency ( O J / O Q = 1). The dynamic rigidity data corrected for second order fluid inertia 

effects gives good agreement with the exact data up to a normalised frequency of 0-6. 

However it is seen in figure 5.15 that the corresponding dynamic viscosity data corrected 

for second order fluid inertia effects is in good agreement with the exact data over the full 

normalised frequency range considered. It is noted that in figure 5.16 the dynamic rigidity 

data corrected for first order fluid inertia effects gives a more accurate prediction of the 

dynamic rigidity than the data corrected for second order fluid inertia effects. This 

behaviour of the dynamic rigidity first order and second order fluid inertia corrections is 

consistent with the simulated data presented in figure 5.2 for a Newtonian fluid in the 

parallel plate geometry. 

The normalised frequency range of applicability of the second order fluid inertia 

corrections is now considered for various values of the non-dimensional quantity R. We 

present the dynamic viscosity and dynamic rigidity corrections in figures 5.17 and 5.18 

respectively. It is seen in figure 5.17 that when R has a value below 40 good agreement is 

obtained with the exact dynamic viscosity data up to a normalised frequency of 0-7. 

However if R has a value below 5 then good agreement with the exact dynamic viscosity 

data is obtained over the full normalised frequency range considered. The corresponding 

dynamic rigidity data presented in figure 5.18 shows that when R has a value below 40 good 
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agreement with the exact data is obtained up to a normalised frequency of 0-2 and if R has a 

value below 5 then good agreement is obtained up to normalised frequencies of 1-6. From 

the Newtonian fluid data presented in figures 5.17 and 5.18 it can be concluded that for all 

values of R the second order fluid inertia correction for dynamic viscosity gives good 

agreement with the exact data up to higher normalised frequencies than the corresponding 

correction for dynamic rigidity. This is consistent with the behaviour seen in figures 5.3 and 

5.4 for the complex viscosity prediction of Newtonian fluids in the parallel plate geometry. 

5.4.2 Single element Maxwell fluids 

For a given concentric cylinder geometry and torsion bar (i.e. r.^ , h, / , K known) 

it can be shown that the normalised complex viscosity {rf jri^) O^K single element Maxwell 

fluid, with a specific relaxation time X, can be represented as a function of the two non-

dimensional quantities R(~ p r^co^li^o) and the normalised frequency {CO/COQ). A S for the 

parallel plate simulations we consider the oscillatory shear flow behaviour of single element 

Maxwell fluids over the frequency range 0<6)<2a)f^ and choose the relaxation lime A 

such that X O)Q = \. 

Figures 5.19 and 5.20 show fluid inertia corrections for the simulated dynamic 

viscosity and dynamic rigidity data respectively of a single element Maxwell fluid when 

/? = 5. In these figures we present the uncorrected data (equation (4.2.17) with S given by 

equation (4.3.15)), data corrected for first order fluid inertia effects and data corrected for 

second order fluid inertia effects. It is seen in figure 5.19 that except near the natural 

frequency {co/a)Q = \) dynamic viscosity predictions are not significantly improved by 

correcting for second order fluid inertia effects. For the corresponding dynamic rigidity data 

in figure 5.20 it is seen that the second order fluid inertia correction gives good agreement 

with the exact data up to a normalised frequency of 1 -4 whereas, the uncorrected data is 
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only in agreement for normalised frequencies below 0 05. 

The normalised frequency range of applicability of the second order fluid inertia 

corrections is now considered for various values of the non-dimensional quantity R. 

Dynamic viscosity and dynamic rigidity data for various values of R is presented in figures 

5.21 and 5.22 respectively. In these figures it is seen that when R has a value below 40 good 

agreement with the exact complex viscosity data is only obtained up to a normalised 

frequency of 0-2, whereas if R has a value below 2 then good agreement is obtained over 

the full normalised frequency range considered. It is noted that the frequency range of 

applicability of the second order fluid inertia corrections for the single element Maxwell 

fluid is approximately the same for both dynamic viscosity and dynamic rigidity data. This is 

consistent with the results presented in figures 5.7 and 5.8 for a single element Maxwell 

fluid in the parallel plate geometry constrained by a torsion bar. 

5.5 Concentric cylinder geometry connected to a strain gauge torsion head 

We simulate the oscillatory shear flow behaviour of a Newtonian fluid and a single 

element Maxwell fluid in a concentric cylinder geometry, where the inner cylinder is 

connected to a strain gauge torsion head. It is noted that we consider the inner cylinder to 

be stationary and assume that the strain gauge has infinite stiffness. For comparison 

purposes we also simulate the concentric cylinder oscillatory shear flow behaviour of a 

Newtonian fluid and a single element Maxwell fluid on a CSR controlled stress rheometer. 

At a prescribed outer cylinder angular frequency of oscillation co the known fluid 

parameters (TJ\ p ) and the geometry parameters {r., r^) can be used in equation (4.3.28) 

and the complex viscosity //g, when fluid inertia effects are ignored, is then known. 

Similariy at a prescribed inner cylinder angular frequency of oscillation o) the known 

geometry and fluid parameters can be used in equation (4.3.30) and the complex viscosity 

71 



TJI , when fluid inertia effects are ignored, for a CSR controlled stress rheometer is also 

known. The two sets of simulated 7* data will be used to establish the frequency range of 

applicability of the respective second order fluid inertia corrections for the Weissenberg and 

CSR instruments. 

As before we consider a CSR concentric cylinder geometry in which the coaxial 

inner and outer cylinders have radii /; = 15 mm and = 20- 75 mm respectively. 

5.5.1 Newtonian fluids 

For a Newtonian fluid in a given concentric cylinder geometry (i.e. r-, known) it 

can be shown that, on both the Weissenberg rheogoniomeier fitted with a strain gauge and 

the CSR controlled stress rheometer, the normalised complex viscosity (^ ' /Vo) 

represented as a function of the non-dimensional normalised frequency (= pr^(ojri^ . 

Figures 5.23 and 5.24 respectively show fluid inertia corrections for the simulated 

dynamic viscosity and dynamic rigidity data of a Newtonian fluid on both the Weissenberg 

rheogoniometer fitted with a strain gauge and the CSR controlled stress rheometer. In these 

figures we present, for both instruments, uncorrected data (obtained from equations 

(4.3.28) and (4.3.30)) and data corrected for second order fluid inertia effects. It can be 

seen fi*om equations (4.3.29) and (4.3.31) that, for both instruments, the dynamic viscosity 

is not influenced by first order fluid inertia effects. Therefore first order fluid inertia 

corrections are only presented for the dynamic rigidity data in figure 5.24. It can be seen in 

figure 5.23 that the Weissenberg rheogoniometer dynamic viscosity data corrected for 

second order fluid inertia effects gives good agreement with the exact data up to a higher 

normalised frequency than the corresponding data for the CSR controlled stress rheometer. 

However the corresponding second order fluid inertia corrections for dynamic rigidity, 

presented in figure 5.24, show that the CSR controlled stress rheometer gives good 
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agreement with the exact data up to higher normalised frequencies than the Weissenberg 

rheogoniometer. It is noted that this behaviour of the second order fluid inertia corrections 

is consistent with the results presented in figures 5.9 and 5.10 for Newtonian fluids in the 

parallel plate geometry. In figure 5.24 it should also be noted that the first order fluid inertia 

correction gives better agreement with the exact dynamic rigidity data than the second order 

correction. Again this is consistent with the results presented in figure 5.10 for Newtonian 

fluids in the parallel plate geometry. 

5.5.2 Single element Maxwell fluids 

For a single element Maxwell fluid in a given concentric cylinder geometry (i.e. r-, 

known ) it can be shown that, on both the Weissenberg rheogoniometer fitted with a 

strain gauge and the CSR controlled stress rheometer, the normalised complex viscosity 

(T/V^ZO) represented as a fijnction of the two non-dimensional quantities 

R (= pr-^/i^Tj^)) and the Deborah number De (= Zoj). 

In figures 5.25 and 5.26 we present fluid inertia corrections for simulated dynamic 

viscosity and dynamic rigidity data respectively of a single element Maxwell fluid when 

R = S, on both the Weissenberg rheogoniometer fitted with a strain gauge and the CSR 

controlled stress rheometer. These figures include, for both instruments, uncorrected data 

(obtained from equations (4.3.28) and (4.3.30)) and data corrected for second order fluid 

inertia effects. Figure 5.26 also shows dynamic rigidity data corrected for first order fluid 

inertia effects. It is seen in figure 5.25 that when fluid inertia effects are ignored the dynamic 

viscosity is underestimated by the Weissenberg rheogoniometer and overestimated by the 

CSR controlled stress rheometer. The corresponding dynamic rigidity data presented in 

figure 5.26 shows thai when fluid inertia effects are ignored, the dynamic rigidity will be 

overestimated by the Weissenberg rheogoniometer and underestimated by the CSR 

73 



controlled stress rheometer. It is noted that when fluid inertia effects are ignored the 

behaviour of the complex viscosity data in figures 5.25 and 5.26, for each instrument, is 

consistent with that observed in figures 5.11 and 5.12 for a single element Maxwell fluid in 

the parallel plate geometry. In figures 5.25 and 5.26 it is seen that when corrected for 

second order fluid inertia effects both instruments give good agreement with the exact 

complex viscosity data up to a Deborah number of 1-4. 

For both the Weissenberg rheogoniometer fitted with a strain gauge and the CSR 

controlled stress rheometer we now consider the Deborah number range of applicability of 

the second order fluid inertia corrections for various values of the non-dimensional quantity 

R. The dynamic viscosity and dynamic rigidity corrections are presented in figures 5.27 and 

5.28 respectively. In these figures it is seen that if R has a value below 40 then good 

agreement with the exact complex viscosity data is obtained up to Deborah numbers of 0-3, 

for both instruments. Whereas when R has a value below 2 both instruments give good 

agreement with the exact data for the full normalised frequency range considered. 

5.6 Cone and plate geometry constrained by a torsion bar 

The oscillatory shear flow behaviour of a Newtonian fluid and a single element 

Maxwell fluid is simulated for the cone and plate geometry, where the cone is constrained 

by a torsion bar. At a prescribed angular frequency of oscillation co the known fluid 

parameters (TJ\ p) and the geometry parameters (a. 0^, I, K ) can be used in equation 

(4.4.22) to evaluate the expression e"'/i9 analytically. It is noted that in order to determine 

e""Is analytically the two infinite series in equation (4.4.22) must be evaluated. Therefore 

the analytically calculated value of e"" 1$ must be checked to ensure that a sufficient 

number of terms in these series have been taken to give a converged solution. On using the 
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calculated value for e"'/i9 in equation (4.2.17), where the geometrical parameter S is given 

by equation (4.4.25), the complex viscosity TJI, when fluid inertia effects are ignored, is 

then known. This value of TJI can be used in equation (4.4.38) to obtain the complex 

viscosity prediction which includes first and second order fluid inertia effects. 

In order to perform the analytical simulations the integral /?„ in equation (4.4.24) 

must be evaluated over a range of a values and for many values of // at each a. 

Computational time can be significantly reduced by using a recursive formula to evaluate 

these integrals. From equation (4.4.24) we let /?„ = a"^ //^^^ where 

From Watson [22] a recursive formula for evaluating the Bessel fijnction J^ y(ar) is 

given by 

^"'^^^^•^-'/^"''^-•'''-r^''''^ (56.2) 

This formula is stable when recursing in the backward direction, but unstable when 

recursing forwards. On substituting equation (5.6.2) into equation (5.6.1) and integrating by 

parts we obtain a recursive formula for evaluating the integral H , / , which is stable when 

recursing in the backward direction, as 

(//+I) „ (2/j + 3 ) a ^ / / V 
H -H J yAaa) (56.3) 

"•K (;i + 2) (« + 2) a "'K^ 

For the simulations we consider a cone and plate geometry with the dimensions 

a = 37 -5 mm and OQ =2\ where a is the radius of the cone base and the plate and 0^ is 

the small angle between the cone and the plate. The moment of inertia of the member 

constrained by the torsion bar is chosen to be / = 164 /iNs^ and a torsion bar with stiffness 
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AT = 5• 005 Nm / rad is used. It is noted that these values are identical to those used for both 

the parallel pate and concentric cylinder simulations and the natural frequency of the 

member constrained by the torsion bar is C0Q = \74-695 rad / s . 

5.6.1 Newtonian fluids 

For a given cone and plate geometry and torsion bar {i.e. a, 6^, I, K known) it can 

be shown that the normalised complex viscosity (^'/ '/o) ^ Newtonian fluid can be 

represented as a function of the two non-dimensional quantities /?(= PCI^COQIT]^) and the 

normalised frequency {(oloy^). As for the previous simulations we consider the oscillatory 

shear flow behaviour of Newtonian fluids over the frequency range 0<0}<2(OQ. 

In figures 5.29 and 5.30 we present fluid inertia corrections for simulated dynamic 

viscosity and dynamic rigidity data respectively of a Newtonian fluid when R - 1000. The 

uncorrected data in these figures is obtained from equation (4.2.17) where the geometrical 

parameter S is defined by equation (4.4.25). Figures 5.29 and 5.30 also include data 

corrected for first order fluid inertia effects and data corrected for second order fluid inertia 

effects. It is seen in figure 5.29 that the second order fluid inertia correction for dynamic 

viscosity gives good agreement with the exact data over the full normalised frequency range 

considered. Figure 5.30 shows that an apparent positive dynamic rigidity is obtained when 

fluid inertia effects are ignored and if second order fluid inertia effects are taken into 

account the expected zero dynamic rigidity is obtained for normalised frequencies below 

0-8. 

5.6.2 Single element Maxwell fluids 

For a given cone and plate geometry and torsion bar {i.e. a, 0^, I, K known) it can 
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be shown that the normalised complex viscosity (y/VVo ) single element Maxwell fluid, 

with a specific relaxation time A , can be represented as a function of the two non-

dimensional quantities R(= PQ^COQ/TJQ) and the normalised fi-equency {co/o)^). As for the 

previous simulations we consider the oscillatory shear flow behaviour of single element 

Maxwell fluids over the frequency range OKOXICO^ and choose the relaxation time X 

such that X Q)Q-\ . 

Figures 5.31 and 5.32 show fluid inertia corrections for the simulated dynamic 

viscosity and dynamic rigidity data respectively of a single element Maxwell fluid when 

R = 1000. In these figures we present the uncorrected data (equation (4.2.17) with 5 given 

by equation (4.4.25)), data corrected for first order fluid inertia effects and data corrected 

for second order fluid inertia effects. Figure 5.31 shows that except near the natural 

frequency (CO/COQ = 1) the dynamic viscosity prediction is not significantly improved by 

correcting for first and second order fluid inertia effects. However the corresponding 

dynamic rigidity data presented in figure 5.32 shows that the second order fluid inertia 

correction gives good agreement with the exact data up to a normalised frequency of 1-4, 

whereas the uncorrected data is only in agreement for normalised frequencies very close to 

zero. 

5.7 Cone and plate geomelry connected to a strain gauge torsion head 

We simulate the oscillatory shear flow behaviour of a Newtonian fluid and a single 

element Maxwell fluid in the cone and plate geometry, where the cone is connected to a 

strain gauge torsion head. It is noted that the cone is considered to remain stationary and 

the strain gauge is assumed to be infinitely stiff. For comparison purposes we shall also 

simulate the oscillatory shear flow behaviour of a Newtonian fluid and a single element 

Maxwell fluid in the cone and plate geometry on a CSR controlled stress rheometer. For a 
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prescribed angular frequency of oscillation o) of the plate the known fluid parameters (77*, 

p) and the geometry parameters (a, ^0 ) can be used in equation (4.4.39) and the complex 

viscosity 77*, when fluid inertia effects are ignored, is then known. Similarly for a prescribed 

angular frequency of oscillation co of the cone the known geometry and fluid parameters 

can be used in equation (4.4.41) and the complex viscosity TJI , when fluid inertia effects are 

ignored, for a CSR controlled stress rheometer is also known. Using the two sets of 

simulated TJI data the respective complex viscosity predictions can be corrected for first 

and second order fluid inertia effects using equations (4.4.40) and (4.4.42) and the 

frequency range of applicability of these corrections can be established. 

As before the simulations are performed for a cone and plate geometry with the 

dimensions a = 31-5 mm and 9^=2". 

5.7.1 Newtonian fluids 

For a Newtonian fluid in a given cone and plate geometry (i.e. 0^ known) it can 

be shown that, on both the Weissenberg rheogoniometer fitted with a strain gauge and the 

CSR controlled stress rheometer, the normalised complex viscosity (T/ ' / ' /O) 

represented as a fijnction of the non-dimensional normalised frequency (= pa^colrj^) . 

Figures 5.33 and 5.34 show, for both the Weissenberg rheogoniometer fitted with a 

strain gauge and the CSR controlled stress rheometer, fluid inertia corrections for the 

simulated dynamic viscosity and dynamic rigidity data of a Newtonian fluid. In these figures 

we present, for both instruments, uncorrected data (obtained fi"om equations (4.4.39) and 

(4.4.41)) and data corrected for second order fluid inertia effects. It is seen in figure 5.33 

that for normalised frequencies below 2000 fluid inertia effects on either instrument only 

have a small influence on the dynamic viscosity prediction. The corresponding dynamic 
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rigidity data presented in figure 5.34 shows that when second order fluid inertia effects are 

taken into account good agreement with the exact data is obtained, on both instruments, for 

normalised frequencies below 1400. 

5.7.2 Single element Maxwell fluids 

For a single element Maxwell fluid in a given cone and plate geometry {i.e. a, OQ 

known ) it can be shown that, on both the Weissenberg rheogoniometer fitted with a strain 

gauge and the CSR controlled stress rheometer, the normalised complex viscosity ( v'/'/o ) 

can be represented as a fijnction of the two non-dimensional quantities R {= pa^/{^rj^)) 

and the Deborah number De (= Xo)). 

In figures 5.35 and 5.36 we present fluid inertia corrections for simulated dynamic 

viscosity and dynamic rigidity data respectively of a single element Maxwell fluid when 

R = 1000, on both the Weissenberg rheogoniometer fitted with a strain gauge and the CSR 

controlled stress rheometer. For both instruments these figures include uncorrected data 

(obtained from equations (4.4.39) and (4.4.41)) and data corrected for second order fluid 

inertia effects. Figure 5.36 also includes dynamic rigidity data corrected for first order fluid 

inertia effects. It is seen in figure 5.35 that for both instruments the dynamic viscosity 

prediction is not significantly improved by correcting for second order fluid inertia effects. 

However for the corresponding dynamic rigidity data in figure 5.36, it is seen that fluid 

inertia effects are important and that for both instruments the second order fluid inertia 

correction gives good agreement with the exact dynamic rigidity data for Deborah numbers 

below 1 -2. 

5.8 Comments 

In the Newtonian fluid simulations for a Weissenberg rheogoniometer it has been 
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observed that, for all three geometries, the first order fluid inertia correction for dynamic 

rigidity gives better agreement with the exact data than the second order correction. It 

should be noted that for all of the single element Maxwell fluid simulations the second order 

fluid inertia correction, as expected, gives a more accurate prediction of the dynamic rigidity 

data than the first order correction. From the figures presented it appears that when either a 

torsion bar system or a strain gauge torsion head system is used the inclusion of second 

order fluid inenia effects will increase the error in the dynamic rigidity prediction of a 

Newtonian fluid. We shall investigate this behaviour for the parallel plate geometry on a 

Weissenberg rheogoniomeier where the upper plate is connected to a strain gauge torsion 

head. The simulated dynamic viscosity and dynamic rigidity data for Newtonian fluids in this 

geometry was presented in figures 5.9 and 5.10 respectively. In these figures the complex 

viscosity data is also compared with the corresponding simulated data obtained for a CSR 

controlled stress rheometer. In figure 5.10 it is seen that for the Weissenberg 

rheogoniomeier the first order fluid inertia correction gives a more accurate dynamic 

rigidity prediction than the second order correction. From this figure it is not possible to 

verify this behaviour for low normalised frequencies, however inspection of the dynamic 

rigidity data reveals that the first order correction is more accurate than the second order 

correction even at very low normalised frequencies. Therefore higher order fluid inertia 

terms will need to be considered in order to improve on the first order dynamic rigidity 

prediction. It is noted that for normalised frequencies below 2-25 on the CSR controlled 

stress rheometer the first order fluid inertia correction is in better agreement with the exact 

dynamic rigidity data than the second order correction. The dynamic viscosity data 

presented in figure 5.9 is not influenced by first order fluid inertia effects and it is seen that, 

for both instruments, the data corrected for second order fluid inertia effects gives a more 

accurate dynamic viscosity prediction than the uncorrected data. 
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Third order fluid inertia corrections have been determined for the parallel plate 

geometry on both the Weissenberg rheogoniometer fitted with a strain gauge torsion head 

and the CSR controlled stress rheometer as 

Weissenberg. 

CSR--

360 189 

l + ^ ( « o / ' ) ' + ^ ( " o / ' r - f ^ ( « o A ) ' 

(5.8.1) 

(5.8.2) 

It should be noted that the value of 7* and hence the value of obtained from each 

instrument will be different (see equations (4.2.28) and (4.2.30)). The third order fluid 

inertia corrections in equations (5.8.1) and (5.8.2) have been applied to the Newtonian data 

in figures 5.9 and 5.10. On the Weissenberg rheogoniometer the third order fluid inertia 

correction gives a more accurate prediction of the dynamic rigidity than the first or second 

order corrections for normalised frequencies below 3. However for the corresponding 

dynamic viscosity data the third order correction is less accurate than the second order 

correction for all frequencies of oscillation. For normalised frequencies below 5 on the CSR 

controlled stress rheometer, both the dynamic viscosity and dynamic rigidity second order 

predictions are improved by correcting for third order fluid inertia effects. 

It has been shown that for Newtonian fluids on a Weissenberg rheogoniometer the 

first order dynamic rigidity prediction can be improved by including both second and third 

order fluid inertia effects in the theory. However for the corresponding dynamic viscosity 

data the third order fluid inertia correction is less accurate than the second order correction. 

It is also noted that for a non-Newtonian single element Maxwell fluid the second order 

correction behaves as expected, giving better agreement with the exact dynamic rigidity 

data than the first order correction. In practice experiments will be performed on fluids 

whose viscosity behaviour is unknown and therefore experimentalists should correct both 

the dynamic viscosity and dynamic rigidity data of all fluids for second order fluid inertia 
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effects. However complex viscosity measurements using the second order fluid inertia 

corrections should only be taken over the frequency ranges of applicability that have been 

determined in this chapter. 

5.9 Conclusions 

We have shown that including first and second order fluid inertia effects in the 

Weissenberg rheogoniometer theory gives a more accurate complex viscosity prediction 

than that obtained from the standard theory in which fluid inertia effects are ignored. The 

simulated oscillatory shear data has shown the importance of these fluid inertia corrections 

when characterising the flow properties of mobile fluids at high frequencies of oscillation. 

When a torsion bar system is used the second order fluid inertia correction gives a 

significant improvement in the complex viscosity prediction when the frequency of 

oscillation is near the natural frequency of the member constrained by the torsion bar. If 

fluid inertia effects are not taken into account for Newtonian fluids, the Weissenberg 

rheogoniometer gives rise to an apparent positive dynamic rigidity as opposed to the CSR 

controlled stress rheometer which gives an apparent negative dynamic rigidity. 

For the simulated complex viscosity data on a Weissenberg rheogoniometer, with a 

strain gauge torsion head, the standard theory underestimates, the. dynamic viscosity and 

overestimates the dynamic rigidity. This is in contrast to the CSR controlled stress 

rheomeler in which the standard theory overestimates the dynamic viscosity and 

underestimates the dynamic rigidity. 

The conclusions for each geometry and torsion head system are now given 

individually. 
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i) Parallel plate geometry {h = 500//m,a = 0• 0375 m ) with torsion bar 

For normalised frequencies below 2 the oscillatory shear flow simulations of 

Newtonian fluids show the validity of the second order fluid inertia correction formulae for 

R values below 1. The single element Maxwell fluid simulations show that for R values 

below I the correction formulae are valid up to normalised frequencies of 1-6. 

ii) Parallel plate geometry {h = 500/im, a = 0• 0375 m ) with strain gauge 

Results for Newtonian fluids have shown the validity of the second order fluid 

inertia correction formulae up to normalised frequencies of 1-5 for both the Weissenberg 

and CSR instruments. For R values below 0-5, oscillatory shear flow simulations of single 

element Maxwell fluids have shown the validity of the correction formulae on both 

instruments up to a Deborah number of 1-6. 

iii) Concentric cylinder geometry {r^ = 15 mm, = 20-75 mm ) with torsion bar 

Oscillatory shear flow simulations of Newtonian fluids show that for R values below 

5 the second order fluid inertia correction formulae are valid for normalised frequencies 

below 2. Results for single element Maxwell fluids have shown that for for/? values below 2 

the second order correction formulae give good agreement with the exact viscosity data up 

to normalised frequencies of 2. 

iv) Concentric cylinder geometry {r^ = l5 mm, = 20-75 mm ) with strain gauge 

On both the Weissenberg and CSR instruments the second order fluid inertia 

correction formulae give good agreement with the exact Newtonian data for normalised 

frequencies below 10. For R values below 2, oscillatory shear flow simulations of single 

element Maxwell fluids have shown the validity of the second order fluid inertia correction 
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formulae up to Deborah numbers of 2 on both instruments. 

v) Cone and plate geometry {a = 0 0375 m, 0^ = 2") with torsion bar 

Oscillatory shear flow simulations of Newtonian fluids and single element Maxwell 

fluids when R = 1000 have shown the validity of the second order fluid inertia correction 

formulae up to normalised frequencies of 0-8. 

vi) Cone and plate geometry (a = 0-0375 m, 0^ = 2") with strain gauge 

For Newtonian fluids we have shown that the second order fluid inertia correction 

formulae are valid for normalised frequencies below 1400 on both the Weissenberg and 

CSR instruments. Oscillatory shear flow simulations of a single element Maxwell fluid when 

R = 1000 show the validity of the correction formulae on both instruments for Deborah 

numbers below 1-2. 
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C H A P T E R 6 

CONCENTRIC C Y L I N D E R END E F F E C T S AND F L U I D INERTIA 

E F F E C T S ON STEADY SHEAR V ISCOSITY PREDICTIONS IN 

C O N T R O L L E D STRESS R H E O M E T R Y 

6.1 Introduction 

The theory for the characterisation of the flow properties of fluids, in commercially 

available rheometers, generally ignores geometry edge or end effects (Walters [3]). Griffiths 

and Walters [25] analysed edge effects in both cone and plate and parallel plate geometries 

for Newtonian fluids and second order fluids. These edge effects give rise to secondary 

flows which can affect the characterisation of a fluid. However for commercially available 

CSR geometries their results indicate that edge effects on viscosity predictions are 

negligible. Olagunju [26] reached a similar conclusion for the flow of a viscoelastic fluid in a 

parallel plate geometry. Walters [3] comments on secondary flows appearing in wide gap 

concentric cylinder geometries which are generated by the ends of the finite cylinders. In a 

concentric cylinder geometry the cylinders are not infinite in length as required by the 

standard theory. It is suggested by Walters [3] that the gap between the cylinders is made as 

narrow as possible in order to reduce end effects. The magnitude of end effects in 

concentric cylinder flow is dependent on the ratio between the length of the cylinders h and 

the gap between the cylinders {r^-ry). Short [27] suggests that the flow in the centre of the 

test length can be influenced by end effects for hjir^ - r , ) ratios less than 10. 

Taylor [28] and Kataoka [29] have studied the flow of Newtonian fluids between 

concentric cylinders where the inner cylinder is rotated at a constant speed and the outer 

cylinder is stationary. Both workers considered cylinders of infinite length and used a linear 

stability theory to predict a critical Taylor number at which the flow becomes turbulent. A 
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numerical study was carried out by Lockett et al [30] to predict a critical Taylor number for 

inelastic non-Newtonian fluids. The flow between infinite cylinders is free of secondary 

flows and Taylor vortices until the critical Taylor number is reached. However in a finite 

concentric cylinder geometry the end effect produces secondary flows which result in the 

formation of Taylor like vortex cells for any non-zero Reynolds number (Hughes et al [31]). 

The effect of these Taylor like vortices on the prediction of shear viscosity will be discussed 

in this chapter. 

In a commercially available CSR controlled stress rheometer the calculation of the 

shear viscosity of a fluid, in a concentric cylinder geometry, is based on a theory in which 

end effects and fluid inertia effects are ignored (T.A. Instruments [24]). This theory assumes 

the fluid under test occupies the region between two infinitely long coaxial cylinders and 

will be referred to as the standard theory throughout chapters 6 and 7. The concentric 

cylinder geometry consists of two coaxial cylinders as shown in figure 6.1. In order to 

reduce the end effect on viscosity prediction the bottom of the inner cylinder is usually 

recessed so that air is trapped underneath the cylinder (T.A. Instruments [24]). Concentric 

cylinder end effects can be reduced by increasing the cylinder lengths or decreasing the gap 

between the inner and outer cylinders. It may be possible to compensate experimentally for 

end effects by considering a range of immersed cylinder lengths. However it is not a simple 

task to produce an accurate extrapolation formula to correct shear viscosity data for end 

effects. 

In this chapter the theory for predicting the shear viscosity in a recessed concentric 

cylinder geometry will be developed to include end effects. Fluid inertia effects in steady 

shear can no longer be ignored and must be taken into account in the theory. For Newtonian 

fluids these effects are included by using a perturbation analysis which is valid for low 

Reynolds number flows. Using this theory existing steady shear formulae are modified to 
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include end effects and second order fluid inertia effects. These modified formulae can be 

incorporated into the CSR software to give an on line correction for shear viscosity data 

obtained from a CSR controlled stress rheometer. The second order fluid inertia 

perturbation theory will be compared with results obtained using the Polyflow package [9]. 

This package is also used to investigate end effects and fluid inertia effects for inelastic 

power law fluids. Simulated steady shear data will be generated for a Newtonian fluid to 

establish the limitations of the second order perturbation theory. It is noted that the 

simulated data will be equivalent to the data obtained from the CSR software which ignores 

end effects and fluid inertia effects. 

Throughout this chapter the perturbation theory equations will be solved using a 

finite difference scheme with an irregular mesh. This allows a finer mesh to be used near the 

recessed end where the greatest shear stress variation occurs. 

6.2 Steady shear theory 

On a CSR controlled stress rheometer a constant torque Q is applied to the inner 

cylinder of a concentric cylinder geometry, forcing it to rotate at a constant angular velocity 

Q. The outer cylinder remains stationary. The angular velocity of the inner cylinder is 

measured and together with the applied torque Q can be used to calculate the steady shear 

viscosity of a fluid. At present the formulae for predicting the shear viscosity of a fluid are 

determined from infinite cylinder theory which is now described. 

6.2.1 Shear viscosity prediction using infinite cylinder theory 

The theory considers the fluid under test to occupy the region between two infinitely 

long coaxial cylinders and to be in contact with the cylinders over a length h. With respect 

to a set of cylindrical polar coordinates ir,d,z) the torque exerted on the inner cylinder due 
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to the motion of the fluid is given by 

C,=-2^r,'\\,l^^d2 (6.2.1) 

When infinite cylinder theory is assumed the r^^ shear stress on the inner cylinder wall is 

given by 

where t] is the steady shear viscosity of the fluid. 

It is noted that equation (6.2.2) is based on Newtonian theory, however it can be shown 

that it is also valid for any inelastic fluid in narrow gap geometries. By the principle of equal 

and opposite forces the torque exerted on the inner cylinder due to the motion of the fluid 

Cp is equal in magnitude to the applied torque Q . Therefore on using equation (6.2.2) in 

equation (6.2.1) we obtain 

This is the formula employed by the CSR software to calculate the steady shear viscosity of 

a fluid. It is noted that the calculation of shear viscosity data using formulae based on 

infinite length concentric cylinders will be referred to as the standard theory throughout 

chapters 6 and 7. For Newtonian fluids a low Reynolds number perturbation analysis will be 

used to produce a formula for calculating the shear viscosity of a fluid which includes end 

effects and second order fluid inertia effects. 

6.2.2 Governing equations and boundary conditions 

In the analysis we shall assume that the inner cylinder rotates at a prescribed 

constant angular velocity ft. The torque exerted on the inner cylinder due to the motion of 

the inner cylinder can then be calculated and compared with that obtained when infinite 
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cylinder theory is assumed. 

The physical dimensions of the flow domain are referred to a set of cyHndrical polar 

coordinates {r,6,z). Figure 6.2 shows a schematic diagram of a concentric cylinder 

geometry which is axisymmetric about the inner cylinder axis of rotation. 

In figure 6.2 the boundary CD is a 'free surface' and for a recessed inner cylinder 

the boundary AB is also a 'free surface*. For the CSR geometries considered in this chapter 

these free surfaces have been observed experimentally, by the author, to remain in a 

horizontal position except for highly elastic liquids or high rotational speeds. For highly 

elastic liquids the Weissenberg effect will distort the free surface and at high rotational 

speeds the free surface will be distorted by fluid inertia effects. However these opposing 

forces counteract each other to a certain degree. In this study elastic effects and high 

rotational speeds are not considered in the steady shear theory and therefore we will impose 

the condition that the *free surface' boundaries remain in their horizontal positions . On 

these surfaces the tangential shear force , the shear force in the 6 direction fg and the 

normal velocity v„ to the free surface is zero. On the remaining boundaries OE, DE and BC 

the tangential velocity and the velocity component satisfy the no slip condition. The 

normal velocity on these boundaries is zero. 

The equation of continuity and the equation of motion of the fluid are respectively 

given by 

V-v = 0 (6.2.4) 

P ^ = - V / 7 + V T (6.2.5) 

where v is the velocity vector, p is the pressure, T is the extra stress tensor, p is the fluid 

density, D/Dt is the substantial derivative and body forces have been neglected. 

The equation of state for an inelastic power law fluid is given by 
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-A r (6-2.6) 
V 2 y 

T = k 

where y = Vv + (Vv)^ is the rate of strain tensor, / j is the second invariant of the rate of 

strain tensor, k and // are power law constants. When n = I equation (6.2.6) is the equation 

of state for a Newtonian fluid. 

An analytical solution of equations (6.2.4), (6.2.5) and (6.2.6) subject to the steady 

shear boundary conditions is not possible over the L shaped flow domain shown in figure 

6.2. Therefore these equations will be solved numerically, subject to the steady shear 

boundary conditions. 

In determining the steady shear viscosity of a fluid using a concentric cylinder 

geometry we are effectively concerned with the torque exerted on the inner cylinder due to 

the motion of the fluid. With reference to figure 6.2 this torque is given by 

C.=-27rr,'\\,l__^^dz (6.2.7) 

The T^g shear stress component for the axisymmetric flow is 

r.o = Vr^(^] (6.2.8) 

where is the steady shear viscosity of the fluid. 

At a prescribed inner cylinder angular velocity Q. equations (6.2.4), (6.2.5) and (6.2.6) can 

be solved numerically and the r^g shear stresses along the inner cylinder wall can then be 

determined. On using these stresses in equation (6.2.7) the torque exerted on the inner 

cylinder due to the motion of the fluid, when end effects and fluid inertia effects are 

included, can be calculated. The value of this torque will then be compared to the value 

obtained from infinite cylinder theory and we can establish the magnitude of end effects and 

fluid inertia effects in steady shear concentric cylinder flows. 

For a power law fluid it can be shown that the r^g shear stress on the inner cylinder 
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wall is given by 

/7 

2n(r./r.) 
(6.2.9) 

On using equation (6.2.9) in equation (6.2.1) the torque exerted on the inner cylinder due to 

the motion of a power law fluid when end effects are ignored is given by 

2Q 
(6.2.10) 

6.3 Fluid inertia perturbation theory for a Newtonian fluid 

In this analysis we consider a Newtonian fluid in a concentric cylinder geometry 

where the inner cylinder rotates at a constant angular velocity Q and the outer cylinder 

remains stationary. With reference to a set of cylindrical polar coordinates (r,0,z) we let 

the velocity components in the r, 0 and z directions be , and respectively. Since 

steady shear flow is time independent and the flow is axisymmetric we assume a velocity 

distribution of the form 

From Bird etal[\] the equation of continuity is given by 

(r V 1 + — - = 0 
r^r^ dz 

(6.3.1) 

(6.3.2) 

The velocity distribution in equation (6.3.1) gives six non-zero components of the shear 

stress tensor as 

dr ^z 

91 



re d r \ r ) dz ^ dz dr 
(6.3.3) 

where is the Newtonian shear viscosity of the fluid. 

The stress equations of motion for axisymmetric steady shear flow, which is independent of 

0 and time t, are given by 

^ dv_ vl 

^ ' dr r dz. 
= 7 

' dr ' dz) 

\ d . . d 

r dr dz 

I 6? / 2 X d 

y-y^^^rTz'^ 

00 dp_ 

dr 

r 8r 

I V , — - + \ \ — -
\ ' dr ' d z ) 

\ d , . d 

'rTr^'^^^'Tz'^ 

dp_ 

dz 

(6.3.4) 

(6.3.5) 

(6.3.6) 

where body forces have been neglected. 

With reference to figure 6.2 the boundary conditions for the three velocity 

components (v^,v^,v.) are now considered. On boundaries OE and DE the normal and 

tangential velocities are zero and the no slip condition is imposed, hence = = = 0. 

These conditions also apply on the moving boundary BC, hence = = 0 and Vg = r,f2. 

The *free surface' boundaries AB and CD do not exert any shear force and hence 

TQ. = T^=0 on these boundaries. We also impose that these 'free surface' boundaries 

remain in their horizontal positions and using equation (6.3.3) gives the conditions 

dvjdz = 0, dvgldz - 0 and \\ = 0 on boundaries AB and CD. There is no fluid motion 

across the line of symmetry and no ^-direction fluid motion on the line of symmetry. 

Therefore on boundary OA we have = 0 and = 0 . Boundary OA is at r = 0 and we 

must impose that the velocity is bounded as r —> 0, hence on this boundary we have the 

condition that Lim v, is bounded. 

On taking r, to be a typical dimension of length and r,Q, the velocity of the inner 

92 



cylinder, to be a typical velocity we define the following non-dimensional variables 

. ^2 

V 
(6.3.7) 

A non-dimensional Reynolds number (Bird el al [2]) for the Newtonian flow is defined as 

R. = (6.3.8) 

where p is the fluid density and rj^ is the Newtonian viscosity. 

Substituting the stress components of equation (6.3.3) into equations (6.3.4) to (6.3.6) and 

using equation (6.3.7) gives the non-dimensional equations 

R. 

R. 

R. 

( dv^ d'y \dv^ ^ .6 3 9̂  

dv 

L ' dr dr'' r dr r 

' dv^ dv\ d'v, 1 dv, d'v, dp 

^'~a7^''' dz)' dr^ ^ r dr ^ dz" dz 

(6.3.10) 

(6.3.11) 

where the * notation is implied but has been omitted for convenience. 

Using equation (6,3.7) the boundary conditions for the non-dimensional functions v (r .z) , 

v^(r,z) and v^(r^z) are given by equations (6.3.12), (6.3.13) and (6.3.14) respectively 

V , = 0 on boundaries OA, BC. DE and OE. 

dv^jdz = 0 on free surface boundaries AB and CD. 

= 0 on boundaries OA, OE and DE. 

dv^ldz = 0 on free surface boundaries AB and CD. 

V f l = 1 on the moving boundary BC. 

(6.3.12) 

(6.3.13) 
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V , = 0 on boundaries BC, D E and OE. 

= 0 on free surface boundaries AB and CD. 

Limv^ is bounded on the line of symmetry OA 
r -»0 

(6.3.14) 

On working to second order terms in Reynolds number the non-dimensional velocity 

components can be expanded in terms of the Reynolds number as 

v.(r,z) = y?.v^,(r.r) + 0(/?;) (6.3.15) 

^ei'.^)^^so{r.z)^R]v^(r,z) + 0{R]) (6.3.16) 

\{r,z) = R^v^^{r,z)^0{R]) (6.3.17) 

where the suffices 0, I and 2 refer to the zero order, first order and second order velocity 

components respectively. It can be shown that the first order Reynolds number component 

in and the second order Reynolds number components in and are equal to zero 

and hence are omitted in equations (6.3.15) to (6.3.17). The pressure term is also expanded 

as a second order power series in terms of the Reynolds number . On considering 

equation (6.3.9) together with equation (6.3.15) and equation (6.3.11) together with 

equation (6.3.17) the pressure term can be expanded as 

P = Kp^ir^z)^0{Rl) (6.3.18) 

On substituting equations (6.3.15) to (6.3.18) into equations (6.3.9) to (6.3.11) and 

comparing the Reynolds number coefficients we have 

/?° terms.' 

L [v , , ] = 0 (6.3.19) 

where ^ = T T + - ^ r + T T = ^ " — 
dr' r dr dz' r' 

is the 6 component of the Laplacian operator of a vector field 
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R\ terms.' 

R] terms:-

V'v. . -
dz 

= 0 

dr 

(6.3.20) 

(6.3.21) 

(6.3.22) 

The boundary conditions given in equations (6.3.12) to (6.3.14) are also expanded 

in terms of the Reynolds number using equations (6.3.15) to (6.3.17). Each set of 

equations and their respective boundary conditions is now considered. 

6.3.1 Zero order equations and boundary conditions 

The only non-zero R^ velocity component is Vg^^r^z), which can be obtained by 

solving equation (6.3.19) subject to the relevant boundary conditions. On considering 

equations (6.3.13) and (6.3.16) the boundary conditions for v^o(r,2) are 

Vgg = 0 on boundaries OA, OE and DE. 

dvgQjdz = 0 on free surface boundaries AB and CD. 

Vgg = 1 on the moving boundary BC. 

(6.3.23) 

6.3.2 First order equations and boundary conditions 

On differentiating equation (6.3.20) with respect to z and differentiating equation 

(6.3,21) with respect to r. the first order pressure term can be eliminated to give 

(6.3.24) 

The first order streamflinction y/{r,z) of the axisymmetric flow is defined as (Bird et a/ [1]) 
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Substitution of equation (6.3.25) into equation (6.3.24) gives 

£V = E\E'y/) = -2vg^^ (6.3.26) 
dz 

where £^ is the bi-harmonic operator and is defined by 

£ ^ = / r - - | - / r (6.3.27) 
î r-" r dr dz 

It is convenient to introduce the variable ij>{r,z) which enables equation (6.3.28) to be 

expressed as the two coupled equations 

^ V = - 2 v , , ^ (6.3.28) 

£V = *̂ (6.3.29) 

On considering equations (6.3.12) and (6.3.15) the boundary conditions for v^,(r,z) can be 

determined and similariy the boundary conditions for v^,(r,2) can be obtained from 

equations (6.3.15) and (6.3.18). Using the boundary conditions for v^,(r,r) and v^,(r,7) in 

equation (6.3.25) we can set y/ = Q on all six boundaries of the flow domain presented in 

figure 6.2. Equations (6.3.27) and (6.3.29) give 

^ = ? ^ - - ? ^ l ^ (6.3.30) dr"^ r dr dz^ 

Therefore on using equation (6.3.30) the boundary conditions for <t>{r^z) can be expressed 

in terms of the streamfunction y/{r^z). The boundary conditions for <t>{r^z) on each of the 

six boundaries of the flow domain are now considered. 

Boundary OE 

v̂ , =0 and v^i=0 therefore using equation (6.3.25) gives d\f/ldz = Q and 
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dy/jdr = 0. Also since the boundary lies in the r-direction and y/ = 0 along its length we 

have d^y/jdr^ = 0. Hence from equation (6.3,30) we have^ = ^li/jdz^ . 

Boundaries BC and DE 

v̂ , =0 and v̂ , =0 therefore using equation (6.3.25) gives dy/fdz-Q and 

dy/jdr = 0. Also since these boundaries lie in the z-direction and y/ = 0 along their length 

we have d^y//dz^ = 0. Hence from equation (6.3.30) we have ^ = d^y//dr^ . 

Boundaries AB and CD 

dv^Jdz = 0 and v̂ , = 0 (herefore using equation (6.3.25) gives d^y/jdz^ = 0 and 

dy//dr = 0. Also since these boundaries lie in the r-direction and ^ = 0 along their length 

we have d^y//dr^ = 0. Hence from equation (6.3.30) we have <p = 0. 

Boundary OA 

The boundary lies in the r-direction and v̂ , = 0 along its length, therefore from 

equation (6.3.25) d^y/Jdz^ - 0. Hence in equation (6.3.30) we have 

<P = d^yfldr^-{\/r)dy//dr (6.3.31) 

Considering the limit of 0 in equation (6.3.31) as r —> 0 gives ^ = 0 on boundary OA. 

The boundary conditions for y/{r,z) and ^(r , r ) in the coupled equations (6.3.28) and 

(6.3.29) are summarised in figure 6.3. 
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= 0 

r ^ = Q n 

A 

t// = 0 

<p = 0 

O 

(f, - d^y/jdr' 

y/ = 0 

<p = 0 
B 

= 0 

= d^y/fdz' 

y/ = 0 

ip - d^y/Jdr 

Figure 6.3> Boundary conditions for the functions V'(/',7) and <p{r,z). 

It is noted that when solving the coupled equations (6.3.28) and (6.3.29) for the 

slreamfunction ii/{r,z) the values of yg^i/.z) are known from the solution to equation 

(6.3.19). On using the solution obtained for the streamfiinction y/{r,z) the secondary 

velocity components v^i(r,z) and v,,(r,z) can be determined from equation (6.3.25). 

6.3.3 Second order equations and boundary conditions 

The only non-zero R] velocity component is v^(/-,2), which is obtained from the 

solution of equation (6.3.22) subject to the relevant boundary conditions. On using 

equations (6.3.13) and (6.3.16) the boundary conditions for Vg^i^.z) are given by 

v̂ 2 0 on boundaries OA, BC ,DE and OE. 

dvg^ jdz = 0 on free surface boundaries AB and CD } 
(6.3.32) 

It is noted that when solving equation (6.3.22) the values of v^o(r,z) are known from the 

solution to equation (6.3.19) and the values of v^,(r,r) and v^j(/'.z) can be determined 

from the solution to the coupled equations (6.3.28) and (6.3.29). 
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It has been shown that equation (6.3.19), the coupled equations (6.3.28) and 

(6.3.29) and equation (6.3.22) must be solved, subject to the relevant boundary conditions, 

in order to determine the non-zero velocity components (v^^, v ,̂, v̂ , and v^̂ ) 

Newtonian second order fluid inertia perturbation theory. Due to the shape of the flow 

domain shown in figure 6.2 it is not possible to obtain an analytical solution to these 

equations. Therefore the equations will be solved numerically using a finite difference 

method, which will be described in section 6.4. 

6.3.4 Modified formulae for predicting the shear viscosity of a Newtonian fluid 

The torque Cp exerted on the inner cylinder due to the motion of the fluid is given 

in equation (6.2.7). Using the r^^ shear stress component given in equation (6.3.3) and the 

non-dimensional variables of equation (6.3.7) the torque is given by 

Cp=-2;r/-,^77,Q 
dr 

dz (6.3.33) 

On substituting the second order power series expansion of v^(r,z) in equation (6.3.16) 

into equation (6.3.33) the torque Cp exerted on the inner cylinder due to the motion of the 

fluid can be expressed in the form 

C,=27rr,\n{/},+fi,R:) (6.3.34) 

where 
Om 

dr r ) 
dz /w = 0.2 (6.3.35) 

are non-dimensional geometry dependent constants. 

On a CSR controlled stress rheometer the applied torque Q is equal in magnitude 

to the torque Cp exerted on the inner cylinder due to the motion of the fluid. On replacing 
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Cp by Co in equation (6.3.34) and working to second order terms in Reynolds number we 

obtain a formula for calculating the Newtonian shear viscosity of a fluid given by 

iTir^np, 

It is convenient to write equation (6.3.36) in the form 

(6.3.36) 

where / , {=2hrl /[/3(,r^{r^ -r^^)]) and / j {=P2IPQ ) are geometry dependent factors and 

/; is the height of the inner cylinder. It should be noted that in this form setting = 1 and 

^ = 0 gives the standard concentric cylinder formula (T.A. Instruments [24]) for 

determining the shear viscosity of a fluid on a CSR controlled stress rheometer. 

The non-dimensional geometry dependent constants PQ and P^, and therefore the 

geometry dependent factors and / j , can be determined from the numerical solution of 

equations (6.3.19), (6.3.28), (6.3,29) and (6.3.22) subject to the relevant boundary 

conditions. 

6.4 Finite dilTerence method of solution for the equations obtained from the fluid 

inertia perturbation theory 

In this chapter we shall consider three CSR concentric cylinder geometries with 

inner cylinder radii r, =l2-5mm, r, = l5mm and r, = l8-5mm which we shall refer to as 

the wide, medium and narrow gap CSR geometries respectively. All three geometries have 

outer cylinder radii r^ =20-75 mm and axial dimensions z, = 1 mm and Z2=5 \ mm. The 

medium gap and narrow gap geometries are commercially available (TA instruments [24]). 

The specially constructed wide gap geometry has previously been used to determine the 
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flow properties of large particle sewage suspensions. 

With reference to figure 6.2 the gap between z = 0 and z = z, below the recessed 

inner cylinder is very small in comparison to the inner cylinder height (zj - ) . Also, 

particularly for the narrow gap geometry, the gap (r̂  - r , ) between the inner and outer 

cylinders is small in relation to the inner cylinder radius r,. It is therefore impractical and 

computationally inefficient to consider solving the equations using a finite difference method 

with a regular mesh over the whole flow domain. For example the use of regularly spaced 

meshpoints in the z-direciion would dictate that 50 times more meshpoints are required 

between z = z, and z = ẑ  than in the small gap between z = 0 and z = z,. Hence very 

large meshes would be required in order to achieve a reasonable degree of mesh refinement 

in the small gap between z = 0 and z = z,. 

The greatest variation in the velocity and streamfunction profiles is expected near 

the recessed end (comer B in figure 6.2) and therefore a fine mesh is required in this area of 

the flow domain. We shall therefore use a finite difference method with an irregular mesh 

where the sieplength varies with a geometric progression ratio. This will allow the degree of 

mesh refinement to be varied over the flow domain with a finer mesh near comer B. 

In this section, finite difference equations will be produced for solving the equations 

obtained from the perturbation theory. The finite difference equations represent a system of 

linear equations which will be solved using the SOR iterative method described in section 

3.2.4, 

6.4.1 Transformation from physical domain to a computational space 

In order to use a finite difference method with an irregular mesh, enabling 

meshpoints to be concentrated near the recessed end (comer B in figure 6.2), the flow 

domain is separated into three rectangular sub-domains as shown in figure 6.4. 
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sub-domain 3 

sub-domain 1 sub-domain 2 

0 r, 

Figure 6.4:- Division of flow domain into three sub-domains. 

In each sub-domain the finite difference mesh gives:-

Stib-doniain \ : w, intervals in the r-direction and //, intervals in the z-direction. 

Sub-domain 2: intervals in the r-direction and intervals in the z-direction. 

Sub-domain 3: m^ intervals in the r-direction and intervals in the r-direction. 

In order to be able to match the finite difference equations across the interfaces between 

each sub-domain the conditions //, = n^ and = m^ must be imposed. 

The equations obtained from the fluid inertia perturbation theory are to be solved 

using a finite difference method with an irregular mesh in the physical domain ( r ,z ) . 

However the second order accuracy of central difference formulae for a regular mesh is 

reduced to first order accuracy for an irregular mesh (Jones and Thompson [10]), Therefore 

the equations are transformed to a computational space which has uniform spacing in the 

transformed independent variables, corresponding to the irregular mesh in the physical plane 

(Anderson [32]). The transformed equations can then be discretised using central difference 

formulae and since a regular mesh is used in the computational space the accuracy of the 

finite difference approximation will be second order (Jones and Thompson [10]). 

For all three sub-domains in figure 6.4 an irregular mesh, in the physical domain, is 

chosen v^th a steplength which varies with a geometric progression ratio. The irregular 
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mesh in each of the three sub-domains in the physical plane ( r , r ) is to be transformed to a 

regular mesh in a computational plane (x,y), where all meshpoints are separated by a unit 

distance of 1. With reference to figure 6.4 the origin of the computational plane (x,y) is 

taken to be at the bottom left hand comer of each sub-domain. Noting that we are working 

with the non-dimensional variables defined in equation (6.3.7) the transformation for each 

of the three sub-domains is given by 

where x = 0 to w, and = 0 to 

where x = 0 to and = 0 to 

Sub-domainy.. r = l + ̂ ^ ^ ^ = ^ . + ^ 7 7 ^ ' 
{\-Oy) \^ ^ 3 / 

where x = 0 to /Wj and 3/ = 0 to /I3 

In equations (6.4.1) to (6.4.3) for 5=1,2,3 , in sub-domains 1, 2 and 3 respectively 

denotes the steplength from the origin of the sub-domain to the first meshpoint in the r-

direction. Similarly for 5=1,2,3 in equations (6.4.1) to (6.4.3) denotes the steplength 

from the origin of the sub-domain to the first meshpoint in the 2-direction, The geometric 

progression ratios and e, determine the degree of non-uniformity in the finite difference 

mesh. I t has already been noted that we must set //, = and =m^. Similarly in order to 
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be able to match the finite difference equations across the interfaces between each sub-

domain we must also set k^, e^, h^=h^ and 6^=3^. On considering the limit 

of equations (6.4.1) to (6.4.3) as and €^ tend to 1 we return to a regular finite 

difference mesh. For example the limit of equation (6.4.1) as S^->\ and -> 1 gives 

r = /?, X for X = 0 to and z = k^y for j ' = 0 to «,. 

6.4.2 Transformations of the derivative terms 

We consider the transformation of a fijnction w(r,r) from the physical plane ( r , r ) 

to the computational plane (x,_v) by letting w(r,z) be transformed to ti,(x,y) for 

5 = 1,2 and 3 in sub-domains 1, 2 and 3 respectively. Note that it is only the independent 

variables which are transformed. The value of the function u^(x,y) in the computational 

plane (x,y) is identical to the value of the function ?/(r,r) at the corresponding meshpoinl 

in the physical plane (r,z). Using equations (6.4.1) to (6.4.3) the transformations for the 

first and second order derivatives of w(r,z) are given by 

^ = A , ^ (6.4.4) 
dx 

oz ay 

^ ^ D ] ^ ^ E , ^ (6.4.7) 
dz^ dy^ dy 

for ^ = 1,2,3, where the coefificients A^, B^, and £ , are given by 

A = -^'-'-^ B,= (6.4.8) 
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for J = 1,2,3. 

It is also convenient to define a coefficient (denoted by C, ) which represents the 

transformation of the quantity 1/r from the physical plane (r,z) to the computational plane 

[x^y) . On using equations (6.4.1) to (6.4.3) the coefficient C, is given in each sub-domain 

by 

Sub-domain I : - C, = (6.4.10) 

Sub-domains 2 and 3:- C, = ( L l ^ i ) — _ ^ = 2 . 3 (6.4.11) 

6,4.3 Finite difTerence equations for the zero order component of the primary 

velocity v^o(^z) 

We let the primary velocity function v^o(r,2) be transformed to Vo,(x,y) for 

5 = 1,2,3 in sub-domains 1, 2 and 3 respectively. Therefore, from equations (6.4.4) to 

(6.4.11), equation (6.3.19) can be transformed to the computational plane (x^y) to give a 

partial differential equation for %(x,>') as 

A ^ ^ H B . + A . C . ) ^ - C ^ v , , ^ D : ^ + E , ^ = 0 (6.4.12) 
ax ox ay ay 

for s- 1,2,3 , where the coefficients A^, B^, C,, and for each o f the three sub-

domains are given in equations (6.4.8) to (6.4.11). 

The velocity ^Q,{x,y) over the xy-plane is denoted at each meshpoint (/,y) by 

^0, where / denotes its position in the x-direction and j denotes its position in the y-

direction. It is seen in equations (6.4.8) to (6.4.11) that the coefficients A^, and C, are 
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functions of x only and the coefficients and are functions of y only. Therefore for 

the meshpoint node notation used the coefficients , and C, are only dependent on the 

discrete variable / and the coefficients and are only dependent on the discrete 

variable/ It is noted that all meshpoints in the computational plane (x ,^ ) are separated by 

a unit distance of 1 in both the x-direction and the _v-direction. Therefore on using central 

difTerence formulae for regularly spaced meshpoints, as described in section 3.2.1, to 

represent the derivative terms in equation (6.4.12) it can be discretised as 

where / = 1 to and y = l to //, for 5 = 1 , 3 

/ = I to - 1 and 7 = 1 to / i , - 1 for 5 = 2 

and 

a,(/) = +(5, + A^C,y2 b^(i) = A] - {B, + A,C,)/2 

e,{iJ) = {2A]+2D]^C]) (6.4.14) 

are discrete flinctions which can be determined using equations (6.4.8) to (6.4.11). 

Since all meshpoints in the xy-plane are separated by a unit distance o f 1, the discrete 

fijnctions a,( / ) , />,(/), c,C/), <̂ ,0) ^sQJ) can be calculated at each meshpoint (JJ) 

by making the substitutions x = / and y = J in equations (6.4.8) to (6.4.11). Therefore for 

a given geometry and finite difference mesh the discrete fijnctions a, ( / ) , ,̂(0, 

^MU) ^ti'yJ) can be evaluated at each meshpoini ( i j ) and stored as an array to 

reduce the computational time. 

In sub-domains 1 and 3 equation (6.4.13) is to be applied on the free surface 

boundaries (for j = //, and j = fh) Therefore a row of ^fictitious points* (for 7 = / ' i + 1 and 

_/' = W3 +1) must be introduced above these boundaries. On these free surface boundaries the 

106 



boundary condition dVg^/dz^O is to be applied, which from equation (6.4.6) transforms 

to dv^Jdy = ^ for 5=1,3, in the computational plane (x,_v). Using central difference 

formulae to represent the derivative dv^Jdy the velocity v̂ ^ on the 'free surface' 

boundaries will satisfy the condition 

for / = 1 to m^- \ ( 5= 1,3). 

Equation (6.4.15) is used to update the values of at the Tictitious points* after 

equation (6.4.13) has been applied for y = l to (.y=1,3). These updated values for 

V will be required when equation (6.4.13) is applied at j = // in the next iteration of 

the SOR method. 

Unless the steplengths and and the geometric ratios 5^ and are specifically 

chosen the coefficients A^^ B^, and will be different in each o f the three sub-

domains. It then follows that the partial differential equation for Vo^(x,_v), given by 

equation (6.4.12), will also be different in each sub-domain. Therefore equation (6.4.13) is 

not applicable at meshpoints which lie on the interfaces between the sub-domains defined in 

figure 6.4. In order to produce a finite difference method where the choice of mesh is as 

flexible as possible, we consider the finite difference equations at meshpoints on the 

interfaces between sub-domains in terms of irregulariy spaced mcshpoints in the physical 

plane ( r ,z ) . 

Interface between sub-domains I and 2 

Meshpoints on the interface between sub-domains 1 and 2 are considered to lie in 

both sub-domain 1 (where / =/w,) and in sub-domain 2 (where i = 0 ) . The velocity 
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^eoi^y^) on this interface is then denoted at each meshpoint by v ,̂ (for y = 1 to //, - 1) 

to correspond to the meshpoint notation for sub-domain 1 and by v̂ ^ (for 
0.7 

7 = 1 to « 2 ~ 0 to correspond to the meshpoint notation for sub-domain 2. A typical 

meshpoint lying on the interface between sub-domains 1 and 2 is presented in figure 6.5. 

01 

02 1./ 

01 

01 m, . / - I 

Figure 6.5:- Surrounding meshpoints and steplengths for a typical meshpoint 
lying on the interface between sub-domains 1 and 2. 

A finite difference representation for the derivatives of v^(,(r,z), on the interface between 

sub-domains 1 and 2, is obtained by considering Taylor series expansions o f the derivatives 

in terms of the four meshpoints and steplengths surrounding the meshpoints (w, J ) shown 

in figure 6.5. It can be shown that 

(6.4.16) 

Similar finite difference formulae for the representation of the derivatives ^^v^^/^r^ and 

c^Voo/^^^ can be obtained and on substituting these formulae into equation (6.3.19) the 

finite difference equations at meshpoints lying on the interface between sub-domains 1 and 2 

are given by 

I 
01 } ^ ^ 0 . V , ^.,^>c^0)vo. -H^.OVo. ^̂ ._,] (6-4.17) 

for 7 = 1 to / I , - 1, where 
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b = — ^ - h — 

(6.4.18) 

It is noted that in order to match the finite difference equations across the interface between 

sub-domains 1 and 2 we let 

for _/ = 1 to / I , - 1 (6.4.19) 

when the values of VQ. have been obtained from equation (6.4.17). 

Interface between sub-domains 2 and 3 

The velocity v^oir^z) is denoted at each meshpoint on this interface by v^^ (for 

/ = 1 to /ŵ  - 1 ) and v̂ ^ ^ (for / = 1 to - 1). Finite difference formulae for the 

representation of the derivatives of v^Q(r,2) can be obtained by considering the surrounding 

meshpoints and steplengths of a typical meshpoint on the interface between sub-domains 2 

and 3. On substitution of these formulae into equation (6.3 .19) we obtain finite difference 

equations at meshpoints on this interface as 

0. ..„...] <6.4.20) 

for I = 1 to - 1, where 

2r + <y<'-"/«, 2r-5\h, 

c„ = d. = 
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On making the substitution x = i in equation (6.4.2) the value of r in the discrete functions 

a^( / ) , b^(i) and e^(i) can be obtained using r = \+h^0-S'2)/(\-S^). It is noted that 

in order to match the finite difference equations across the interface between sub-domains 2 

and 3 we let 

= V for / = 1 to m^ -1 (6.4.22) 
i.O 

when the values of have been obtained from equation (6.4.20). 

The iterative procedure for solving the finite difference equations presented in this 

section is given in appendix 6.1 

6.4.4 Finite difference equations for the streamfunction y / ( r j z ) 

Transforming from the physical plane (r,z) to the computational plane (x,y), we 

let the streamfijnction ^ (^ ,z ) be transformed to V^,(x,_v) and the variable (p{r,z) be 

transformed to <j>,{^yy) for 5=1,2,3 in sub-domains 1, 2 and 3 respectively. Therefore, 

from equations (6.4.4) to (6.4.11), the coupled equations (6.3.28) and (6.3.29) can be 

transformed to the computational plane {x,y) to give partial differential equations for 

^A^.y) and y/,{x,y) as 

for J =1,2, 3 , where the coefficients A^, B^, C,, D, and are given in equations 

(6.4.8) to (6.4.11). 
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In equation (6.4.23) v^^ix.y) is known at each meshpoint from the finite difference 

solution of . Therefore, on using central difiference formulae for regulariy spaced 

meshpoints, the right hand side of equation (6.4.23) (denoted by the discrete fijnction 

fsQJ)) be calculated at each meshpoint using the formula 

f.QJ) = g.U) v „ . . [ vo , ^ - v„, ^ . _ ] (6.4.25) 

where / = ! to m^-\ and j - \ to - 1 for 5 = 1 , 2 , 3 

The discrete fijnction g^j) = - A equation (6.4.25) can be calculated at each meshpoint 

by making the substitution y = j in the coefficients given in equation (6.4.9). The 

streamflinction X^,y) and the variable <l>,{x,y) over the xy-plane are denoted at each 

meshpoint (/,y) by i f / , and respectively. On using central difference formulae for 

regularly spaced meshpoints to represent the derivative terms in equations (6.4.23) and 

(6.4.24) the coupled equations can be discretised as 

= — ' — k ( 0 <l>s +*,(0 <t>. +c(J) -^diJ) <t>^ - / , ( / . 7 ) l (6.4.26) 

where / = 1 to m^-\ and j= \ to " , - 1 for 5 = 1 , 2 , 3 

and 

a,(/) = + {B, - A, C,)I2 d^i) = Aj - (B, - A^ C j / 2 

c,(y) = D > £ , / 2 d,U)-Dl-Ej2 

e,(iJ) = 2A]^2D] (6.4.28) 

are discrete fijnctions which can be calculated at each meshpoint (/,_/) by making the 

substitutions x = / and = 7 in equations (6.4.8) to (6.4.11). 
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As for v^o(r,z), we consider finite difference equations for y/{r,z) and ^ ( r , r ) at 

meshpoints on the interfaces between sub-domains in terms of irregularly spaced meshpoints 

in the physical plane {r,z). 

Interface between sub-domains I and 2 

The streamfijnction y/(r,z) is denoted at each meshpoint on this interface by y/, 

(for j= \ to / / , - I ) and v^2 ^ (for J = \ to n^-\). Similarly the variable ^( r ,z) is 

denoted by (for j = \ to / / , -1 ) and ^ 2 (^or j = \ to " 2 ~ 0 Finite difference 
m,. / O.J 

formulae for the representation of derivatives of ^(r,z) and f^(r,z) can be obtained by 

considering the surrounding meshpoints and steplengths of a typical meshpoint on the 

interface between sub-domains 1 and 2. On substitution of these formulae into equations 

(6.3.28) and (6.3.29) the finite difference equations at meshpoints lying on this interface are 

given by 

^ . . . > = ^ K w ^ * - ^- <^-^-25) 

1 

for j = \ to /J, - 1 , where 

2-<?{"--"/?, ^ 2+h, 

2 2 

24-/,,-<?l-^-V, 2 

/• 0") = ^ — — (6 4 31) 

V, ,_,,+^»,0)V', ,,,+^-.0) V. (6.4.30) 

112 



The discrete fijnclion (J) can be calculated at each meshpoint on the interface using the 

values obtained from the finite difference solution of v., . It is noted that in order to 

match the finite difference equations across the interface between sub-domains I and 2 we 

set ^ 2 0 = ^ 1 . for y = 1 to /?, - 1 when the value of ^, ^ .̂ is obtained from equation 

(6.4.29). Similarly we set ¥2 ^ . for 7 = 1 ô " 1 - 1 when the value of ^ , ^ . is 

obtained from equation (6.4.30). 

Interface between sub-domains 2 and 3 

The streamfijnction ^(r,z) is denoted at each meshpoint on this interface by y/^ 

(for / = 1 to fjj^-l) and by ¥3 (for ' = 1 to m^ -1). Similarly the variable (j>{r,z) is 

denoted by (p^ (for / = 1 to m^ - \ ) and ^ 3 .^ (for / = 1 to - 1 ) . The finite difference 

equations at meshpoints on the interface between sub-domains 2 and 3 are given by 

<P2 (0^*2 (0<*2 + ^ ^ < * 3 ^^n.<p2 ' / A O (6.4.32) 

for / = 1 to ^ 2 - 1, where 

2r + 5\h-, 

c_ = 
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On making the substitution x = / in equation (6.4.2) the value of r in the discrete functions 

^n,(0, b^{i), e^(i) and / ^ ( / ) can be obtained using r = \+h,(\-S'^)/{\-S,). The 

discrete function (/) can be evaluated at each meshpoinl on the interface using the values 

obtained from the finite difference solution of \' and v_, . In order to match the finite 

difference equations across the interface between sub-domains 2 and 3 we set (p^ ^-^2 . 

for / = I to - 1 when the value of ^ 2 obtained from equation (6.4.32). Similarly 

we set ^ 3 = ^ 2 m^~] when the value of is obtained from 

equation (6.4.33). 

As presented in figure 6.3 the boundary conditions for the variable ^(r,z) on 

boundaries BC, DE and OE are dependent on the streamfijnction ^ ( r , z ) . Therefore once 

each iteration of the SOR method is completed, the boundary conditions for _ ^ on these 

boundaries must be re-calculated using the most recent values obtained for ¥t . Using the 

transformations for derivative terms in equations (6.4.4) to (6.4.7) we consider the 

boundary conditions for on boundaries BC, DE and OE. 

Boundary OE 

On this boundary dii/jdz^Q and therefore from equation (6.4.6) we have 

dy/Jdy = 0. Using this result in equation (6.4.7) the boundary condition ^ = c^y//^z^ is 

transformed to the ry-plane as 
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<f>. = D ] ^ (6.4.35) 

for 5 = 1 , 2 where the coefficient is given in equation (6.4.9). 

To evaluate d^^f Jdy^ on the boundary a quadratic function is fitted through the finite 

difference values . at the three meshpoints closest to the boundary (i.e. 7 = 0,1,2). 
' J 

Using this quadratic fijnction and noting that on this boundary y/", = 0 and dy/Jdy = 0, 

the boundary condition for is given by 

^^,(0) V , , , (6.4,36) 

where / = 1 to for 5 = 1 and /' = 0 to - 1 for 5 = 2 

The discrete function d^(J) - 2 D] can be calculated at each meshpoint on the boundary by 

making the substitution ^ = 7 in the coefficient in equation (6.4.9). 

Boundary DE 

On this boundary dif/jdr = 0 and therefore from equation (6.4.4) we have 

dxff Jdx - 0. Using this result in equation (6.4.5) the boundary condition ^ = d^yz/dr^ is 

transformed to the jry-plane as 

for s = 2. 3 where the coefficient A^ is given in equation (6.4.8). 

To evaluate d^yf Jdx^ on the boundary a quadratic fijnction is fitted through the finite 

difference values Hf^ at the three meshpoints closest to the boundary {i.e. 

/ = m^, - 1 , m^-2). Using this quadratic fiinction and noting that on this boundary 

= 0 and d y / j 3 x = 0, the boundary condition for is given by 
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,="'^'"-^y'-^., (6.4.38) 

where y = 1 to n^ for s = l and 7 = 0 to - 1 for 5 = 3 

The discrete function a,(/) = 2 A] can be calculated at each meshpoint on the boundary by 

making the substitution x-i in the A^ coefficient in equation (6.4.8). 

Boundary BC 

We have d^/jdr = 0 on this boundary which lies in the same direction as boundary 

OE. Therefore in the transformed xy-plane the boundary condition for boundary BC is given 

by equation (6.4.37) (for .y = 3). 

To evaluate the value of d^\(f Jdx'^ on the boundary a quadratic function is fitted 

through the finite difference values V', at the three meshpoints closest to the boundary 

{i.e. i = 0,1,2). Using this quadratic function and noting that on this boundary = 0 and 

dif/Jdx = 0, the boundary condition for is given by 

? > 3 „ . , = « 3 ( 0 ) V ^ , , , . (6.4.39) 

where j - \ to / i j - I 

The discrete function a3(/) = 2 A] can be calculated at each meshpoint on the boundary by 

making the substitution x = / in the A^ coefficient of equation (6.4.8). 

Meshpoint at the corner point B 

Equation (6.4.39) is not applicable at the meshpoint (_/ = 0) which lies on comer B 

in figure 6.2 and the boundary condition for ^(r ,z) at this comer must be calculated using 

equation (6.3.30). It is noted that the meshpoint on this comer is considered to lie in sub-

domains 1, 2 and 3 (at meshpoints (/w,,/i,), ( 0 , « 2 ) and (0,0) respectively). The conditions 
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dif/ldr = 0 and dy/Jdz = 0 apply at the corner and therefore from equations (6.4.4) and 

(6.4.6) we respectively have d \ f f j S x = Q and d y / j S y = 0. On using these results in 

equations (6.4.5) and (6.4.7) and using equation (6.3.30), the boundary condition for (p^ on 

comer B is transformed to the xy-plane as 

where the coefficients A^ (for 5 = 2 , 3 ) and (for 5= 1,2) are given in equations (6.4.8) 

and (6.4.9) respectively. 

To evaluate ^y/Jdx^ on corner B, from the finite difference values y/, , a 

quadratic fijnction is fitted through the three meshpoints in sub-domain 2 at y = n^ which 

are closest to the comer {i.e. at / = 0,1,2 ). Similariy d^W J^y^ is evaluated on comer B, 

from the finite difference values v^, by fitting a quadratic function through the three 

meshpoints in sub-domain 2 at i = 0 which are closest to the corner {i.e. at 

y = / ? 2 » / / 2 - 1 , " 2 ~ 2 ) . On using these quadratic functions and noting that on comer B 

V ,̂ = 0 , dy/ Jdx = Q and dy/ Jdy - 0 the boundary condition for (p^ is given by 

^ ^ . , „ ^ = ^ . ( 0 ) V ' , , ^ + C / 2 ( « 2 ) V ' , ^ ^ _ , (6.4.41) 

where the discrete functions 02(0 = 2 Al and d^{j) = 2Dl can be calculated by making 

the substitutions x = i and y = J in the A^ and coefficients of equations (6.4.8) and 

(6.4.9) respectively. When the boundary condition for (p^ has been calculated we set 

(pi = ip-, and <p-. = (p-, 

The iterative procedure for solving the finite difference equations presented in this 

section is given in appendix 6.2 
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6,4,5 Determination of the secondary flow velocities v^|(r,z) and Vj , ( r ,2) from the 

fmite difference solution for the streamfunction V^(r,z) 

Transforming from the physical plane ( r ,z) to the computational plane (x,y), we 

let v̂ , ( r .z) and v̂ , ( r , 2 ) be transformed to v^^^^y) and v^^{x,y) respectively for 

s= 1 , 2 . 3 . Using equations (6.4.4) to (6.4.11), equation (6.3.25) is transformed to the xy-

plane to give expressions for v,^{x,y) and v,^(r,^) as 

v . = C , D . ^ ^ . = - A . C , ^ (6.4.42) 

for 5 = 1 . 2 , 3 , where the coefficients A^, and are given in equations (6.4.8) to 

(6.4.11). 

The secondary velocities v^^(x,j') and v^^{x,y) over the xv-p'ane are denoted at 

each meshpoint (/,y) by v̂ ^ and v̂^ respectively. On using central difference 

formulae to represent the derivative terms in equation (6.4.42) it can be discretised to give 

. , = OsOJ) W, - Ws . ._, (6.4.43) 

^z, =*,(0[v^ 1 (6.4.44) 

where / = 1 to m^-\ and _/= 1 to - 1 for 5 = 1 , 2 , 3 

The discrete ftinctions a^{iJ) = C,Dj2 and b^(i) = -A^Cj2 can be calculated at each 

meshpoint ( i j ) by making the substitutions x = / and y = J in equations (6.4.8) to 

(6.4.11). 

It is noted that equation (6.4.43) cannot be applied on the free surface boundaries 

(J = «, and j = n^) where the value of v̂ ^ is non-zero. Also, equation (6.4.44) cannot 

be applied on the line of symmetry (/ = 0 in sub-domain I ) where the value of v^^ is non­

zero. The method used to calculate v ,̂ and on these boundaries and on the 
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interfaces between sub-domains is now described. 

Boundary OA 

Since the flow is axisymmetric dy/jdr = 0 on this boundary. Therefore from 

equation (6,3.25) we must consider the limit of -{\lr)d\i/jdr as r tends to zero to evaluate 

v^,(r,z) on this boundary. Using L^Hopital's rule gives 

Urn v̂ , = (6.4.45) 

r=0 

Since dy/ldr = 0 we have, from equation (6.4.4), d\f/Jdx = 0 and using this result 

equation (6.4.5) gives 

m 

-A (6.4.46) 

x=0 
dx 

where the coefficient -4, is given by equation (6.4.8). 

To evaluate d^y/Jdx^ on the boundary a quadratic function is fitted through the finite 

difference values at the three meshpoints closest to the boundary {i.e. at / = 0,1,2 ). 

Using this quadratic function and noting that on this boundary and dy/Jdx = 0, 

the secondary velocity v^^ ^ is given by 

for y = I to / I , - I , where the discrete function a,(/) = -2 /J, ' can be calculated by making 

the substitution x = i in the A^ coefficient of equation (6.4.8). 

Boundaries AB and CD 

On these boundaries = 0 and since dv^Jdz-O we have, from equation 
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(6.3.25), the condition d^y/Jdz^ =0 which implies that if/^ = -y/^ (for 5 = 1,3). 

Using this condition in equation (6.4.43) the secondary velocity v is given by 

=-2«.(/".«,) v . , „ , (6.4.48) 

where / = ! to /w,-1 for j = l , 3 

In this equation the discrete function a^{i,j) - C, Dj2 can be calculated at each meshpoint 

by making the substitutions x = / and = y in equations (6.4.8) to (6.4.1 i ) . 

Inter/ace between sub-domains I and 2 

The secondary velocities v and v̂ , can be calculated at meshpoints on this 

interface using the formulae 

(6.4.49) 

(6.4.50) 

for j= \ to //, - 1 

When the values of v and v„ have been calculated, using equations (6.4.49) and 

(6.5.50) respectively, we let v̂ ^ = and v̂ ^ ^. = "i " ' 

Interface between sub-domains 2 and 3 

At meshpoints on this interface the secondary velocities v̂ ^ _^ and v̂ ^ _^ are 

calculated using the formulae 

(6.4.51) 
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for / = 1 to m^~\ 

When the values of and v have been calculated, using equations (6.4.51) and 

(6.5.52) respectively, we let ^ = v̂ ^ and ^ = . ^ for / = 1 to - 1 . 

6.4.6 Finite difference equations for the second order component of the primary 

velocity function v^j(r,z) 

Transforming from the physical plane ( r . r ) to the computational plane (x,y), we 

let the second order velocity function Vg2if.^) be transformed to VjA^^y) J = 1 , 2 . 3 . 

From equations (6.4.4) to (6.4.11), equation (6.3.22) can be transformed to the xy-plane to 

give a partial differential equation for v^^{x,y) as 

= ^ . v , . ^ + C . v , ^ v < „ + A v . , ^ (6.4.53) 
* rs 

for 5 = 1 ,2 ,3 . where the coefficients A^, B^, C , . and E, are given in equations (6.4.8) 

to (6.4.11). 

In equation (6.4.53) ^Q,{x,y) is known at each meshpoint from the finite difference 

solution of v,,̂  . Also v^^(x,>')and v^^{x,y) can be determined at each meshpoint (iv^ _ 

af̂ d ) ^^^^ the finite difference solution for t^/^ . Therefore, on using central 

difference formulae for uniformly spaced meshpoints, the right hand side of equation 

(6.4.53) (denoted by the discrete function f , { i j ) ) can be calculated at each meshpoini 

using the formula 
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+ ''C,(Ov,, . .[vo, . - V , , . . J (6.4.54) 

where / = 1 to -1 and 7 = 1 to / i , -1 for .y= 1 , 2 , 3 . 

In this equation the discrete functions fa^(i) = Aj2 , rb^i) = and rc^(i) = Dj2 can be 

calculated at each meshpoint (/,_/) by making the substitutions x~i and y = j in 

equations (6.4.8) to (6.4.11). Equation (6.4.54) is not applicable on the free surface 

boundaries (7 = «, and j ~ n^) as this would involve using the fictitious points (y = + 1 

and j-n^ + \). However on these boundaries we have v̂ ^ = 0 (for 5 = 1 . 3 ) and 

therefore the right hand side of equation (6.4.53) for meshpoints on these free surface 

boundaries is given by 

/,(>,/O = '-«,(0v. ^o,,,,„ -^0,, ,„ (6.4.55) 

where / = 1 to - 1 for 5 = 1 , 3 . 

The velocity ^^s^^^y) ^"^^^ xy-plane is denoted at each meshpoint (/,_/) by 

. It is noted that the left hand side of equation (6.4.53) for V2^(x ,y ) is of the same 

form as the left hand side of equation (6.4.12) for V Q ^ ( X , _ V ) . Therefore on modifying 

equation (6.4.13) to include the non-homogeneous term / , ( / , y ) , the finite difference 

equations for v̂ ^ are given by 

where / = 1 to -1 and j = \ to for J = 1 , 3 

/ = 1 to - 1 and _/ = 1 to n^ - 1 for ^ = 2 

and the discrete functions a , ( / ) , b^{i) ,c^{j) ,d^{j) and e^{ij) are given in equation 

(6.4.14). 
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In sub-domains 1 and 3 equation (6.4.56) is to be applied on the free surface 

boundaries (for J = //, and J = n^). We therefore introduce a row of 'fictitious points' (for 

j = / I , + 1 and y = /?3 +1) above these boundaries and the velocity v^^ will satisfy the 

condition 

V , = V - (6.4.57) 

for / = l to / ; ; , - ! ( ^ = i , 3 ) . 

Equation (6.4.57) is used to update the values of v^^ at the 'fictitious points', which 
i.n,+1 

will be required when equation (6.4.56) is applied at J = in the next iteration of the SOR 

method. 

The finite difference equations for meshpoints on the interfaces between sub-

domains are considered in terms of irregulariy spaced meshpoints in the physical plane 

( r . r ) . 

Interface between sub-domains J and 2 

The right hand side of equation (6.3.22) is calculated at each meshpoint on the 

interface between sub-domains 1 and 2 using the formula 

f (n = v J= - — ^"' •'-̂  + v 

L ZiilJ »w - • ' ' - ' J (6 4 58) 

for 7 = 1 to /f, - 1. 

The left hand side of equation (6.3.22) for Vg^{r,z) is of the same form as the left hand side 

of equation (6.3.19) for Vgg{r,z). Therefore on modifying equation (6.4.17) to include the 
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non-homogeneous term / ^ C / ) , the finite difference equations for meshpoints on the 

interface between sub-domains 1 and 2 are given by 

' [ - . V , , , ^+6 , v„ ^ . , ^ > c ^ O ) v . , , , , + ^ . ( ^ > . (6.4.59) 

for _/ = 1 to //, -1 , where the discrete fijnctions b^, (J), d^ (J) and (J) are 

given in equation (6.4.18). 

It is noted that in order to match the finite difference equations across the interface between 

sub-domains 1 and 2 we lei v,. = v., for 7=1 to n, - 1 when the values of v,, 

have been obtained from equation (6.4.59). 

Inter/ace between stib-domains 2 and 3 

At meshpoints on this interface the right hand side of equation (6.3.22) is given by 

+v i= — ^^^^ (6 4 60) 

On modifying equation (6.4.20) to include the non-homogeneous term /„^(i)y finite 

difference equations for meshpoinis on the interface between sub-domains 2 and 3 are given 

by 

for / = 1 to /w,-1 , where the discrete functions a^ {i), b^{i), , d^ and c^(/) are 

given in equation (6.4.21). 

On making the substitution x = / in equation (6.4.2) the value of r in the discrete functions 
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^«,(0. ^ n , ( J ) can be obtained using r = 1 + / i 2 ( l - 5 2 ) / ( l - ^ 2 ) • In order to match 

the finite difference equations across the interface between sub-domains 2 and 3 we let 

V , , = V , , for / = I to -1 when the values of v,, have been obtained from 

equation (6.4.61). 

The iterative procedure for solving the finite difference equations presented in this 

section is given in appendix 6.3 

6.4.7 Calculation of the geometry dependent constants fi^ from the finite difference 

solutions for »'^o(''i2) ^"^ ^02i''y^)' 

In equation (6.3.34) the torque exerted on the inner cylinder due to the motion of 

the fluid is expressed in terms of the non-dimensional geometry dependent constants 

and / ? 2 . These constants are to be determined from equation (6.3.35) using the velocity 

distributions obtained for v^(,(r,z) and v^ji^^z) from the finite difference method. With 

reference to figure 6.4 the inner cylinder wall lies in sub-domain 3. On using equations 

(6.4.3) and (6.4.4) in equation (6.3.35) the geometry dependent constants fi^ are given by 

( i - A ) ^ ^ . 3 
+ V m3 

e^dy (6.4.62) 

r=0 

for w = 0,2 

In the computational plane {x,y) all meshpoints are separated by a unit distance of 1 and 

therefore for the meshpoint node notation used we have y = y . The velocity distributions 

for v^^{x,y) (/w = 0,2) are known at a discrete number of meshpoints from the finite 

difference solutions for v^^ ^ and V23 . Therefore on using these known velocities the 

continuous integral in equation (6.4.62) can be evaluated numerically, over the discrete 
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intervals 7 = 0 to « 3 , using the composite Simpsons rule (Burden and Faires [33]). In 

equation (6.4.62) v^al^o is equivalent to for J = Oion^. The derivative 

<^v„3/<^x|^^ can be evaluated at each y by fitting a cubic function through the discrete 

values v^- at the four meshpoints closest to the inner cylinder wail (i.e. / = 0,1,2,3). 

Noting that all meshpoints in thexy-plane are separated by a unit distance of 1 we have 

mi 

dx 
"1_LL (6.4.63) 

for m- 0 , 2 . 

Therefore on using equations (6.4.62) and (6.4.63) and the method described the non-

dimensional geometry dependent constants and can be calculated from the finite 

difference solutions for VQ^[r,z) and v^2(r ,z) . 

6.4.8 Selection of the mesh constants in the finite difference equations 

In order to give maximum choice and flexibility in the mesh used, the finite 

difference method has been formed to allow the steplengths to be varied by a different 

geometric progression ratio in each of the three sub-domains. However the accuracy and 

rate of convergence of the solution is maximised when derivative terms at a given 

meshpoint are approximated using meshpoints which are at an equal distance either side of 

it. If irregularly spaced meshpoinis are used one order of accuracy is lost (Jones and 

Thompson [10]) from that given by a regular mesh. The greatest variation in velocity and 

streamflinction profiles, and hence the largest values of their derivatives, are expected near 

comer B in figure 6.2. Therefore we choose the steplengths and and the geometric 

progression ratios 5^ and in each sub-domain, such that the seven meshpoints which 

surround the meshpoint on comer B are all at an equal distance from it in the physical plane 
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( r , z ) . Moving away from comer B the distances between successive meshpoints will 

increase or decrease depending on the geometric progression ratios and used in each 

sub-domain. 

With reference to figure 6.2 the gap between 7 = 0 and 2 = 2 , below the inner 

cylinder is much smaller in comparison to any other dimension of the flow domain for the 

three C S R geometries. We choose regulariy spaced meshpoints in this gap and therefore in 

sub-domains I and 2 we have the ratios £^ = 1 and = 1 respectively, hence 

^ 1 =^i/"i = ^ 2 -^ihh is chosen such that the meshpoints which lie on 

either side of the interface between sub-domains 2^nd 3 are at an equal distance from it. In 

sub-domain 2 all meshpoints are separated by the steplength in the z-direction and we 

require that the steplength in region 3 between the interface and the first meshpoint above it 

is equal to . Therefore using equation (6.4.3) and setting k^ = k^ we have 

This equation can be solved numerically to determine the geometric progression ratio E-^ . In 

order to have the meshpoints surrounding comer B all at an equal distance from it in the 

physical plane ( r ,z ) we must set -k^. Therefore from equation (6.4.2) we can obtain 

the geometric progression ratio by numerically solving the equation 

(6.4,65) 

To ensure that the finite difference equations can be matched across the interface between 

sub-domains 2 and 3 we must set =h^ and Considering the interface between 

sub-domains 1 and 2, we must set h^S^^~^^ =h^ to have meshpoints at an equal distance 

either side of it in the physical plane {r.z). On using this condition in equation (6.4.1) we 

have 
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This equation can be solved numerically to determine the geometric progression ratio <5,. 

The steplength /i, can then be determined using /?, =h^/S\'^~^^. A final condition on the 

chosen finite difference mesh is that the same number of meshpoints are used in both the r-

direction and z-direction in each sub-domain. Hence we have /;/, = /i, = = = nt^ = . 

For the 1:2 ratio gap geometry we also wish to concentrate meshpoints around 

corner B in figure 6.2. The mesh constants in each sub-domain are chosen such that the 

largest distance between any two successive meshpoints is 10 times greater than the 

smallest distance between any two successive meshpoints in that sub-domain. 

6.5 Steady shear results 

Steady shear end effects and fluid inertia effects are considered for the three C S R 

geometries and the 1:2 ratio gap geometry previously described. The finite element mesh 

used in the Polyflow package has irregulariy spaced meshpoints, where the steplength varies 

with a geometric progression ratio. The flow domain is separated into three rectangular sub-

domains as shown in figure 6.4 and the ratios are chosen as described in section 6.4.8. 

Using Polyflow the r,^ shear stresses along the inner cylinder wall can be 

determined and used in equation (6.2.7) to calculate the torque Cp exerted on the inner 

cylinder due to the motion of the fluid. The convergence of the Polyflow solution is 

examined by considering the steady shear flow ( n = l r a d / s e c ) of a Newtonian fluid 

(TJQ = \ Pa.sec) in the medium gap C S R geometry where fluid inertia effects are ignored 

(p = 0). The torque exerted on the inner cylinder due to the motion of the fluid has been 

calculated for various sizes of the finite element mesh. Due to the size of memory on the 

computer system available to run Polyflow the largest finite element mesh that can be used 
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has 36x36 divisions in each of the three sub-domains. However a mesh of this size provides 

a sufficiently accurate solution where the difference in the torque value obtained from a 

24x24 mesh and a 36x36 mesh is only 0-211%. 

We examine the convergence of the finite difference method by calculating the value 

of the non-dimensional geometry dependent constant for various mesh sizes. Values of 

have been calculated for the medium gap C S R geometry using meshes with up to 

320x320 divisions in each sub-domain. There is a 0-234 % difference between the value of 

obtained with a 320x320 mesh and the value obtained with a 160x160 mesh. It should 

be noted that convergence of the finite difference scheme for a 320x320 mesh requires 

considerably more computational time than convergence with a 160x160 mesh. A 

sufficiently accurate solution is obtained with a 160x160 mesh and therefore this mesh size is 

used for the perturbation theory results presented in this section. The value of P^ can also 

be obtained by ignoring fluid inertia effects in the Polyflow package. For the medium gap 

C S R geometry the difference between these values is only 0-204%. This gives a validation of 

the computer code used to generate the solution of the finite difference equations. 

When fluid inertia effects are included in the theory of steady shear concentric 

cylinder flow there is a critical value of the Reynolds number beyond which the flow 

becomes unstable (Bird et al [2]). Referring to the Reynolds number defined in equation 

(6.3.8), for concentric cylinder flow in which the inner cylinder rotates with constant 

angular velocity and the outer cylinder is stationary, the critical value of the Reynolds 

number is given by Bird et al [2] as 

Therefore in the analysis of fluid inertia effects on steady shear viscosity predictions we 

restrict our attention to concentric cylinder flows below this critical value, where the flow is 
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stable. 

In figures 6.6(a) and 6.6(b) we present the primary velocity flow contours and 

secondary flow velocity streamlines respectively, in a wide gap geometry for a Newtonian 

fluid at 7?, = 1 (1 008 % of the critical Reynolds number). These flow patterns have been 

obtained using the velocity distributions obtained from the finite difference method in 

equation (6.3.16). In figure 6.6 (a) it is seen that the primary velocity flow distribution 

deviates from the uniform distribution obtained when end effects are ignored. Therefore, 

from equation (6.2.8), end effects will produce a change in the r^g shear stresses used to 

calculate the torque C^.. Figure 6.6(b) shows a weak single Taylor like vortex cell (Taylor 

[28]) between the inner and outer cylinder walls. In figures 6.7(a) and 6.7(b) we present the 

corresponding primary velocity flow contours and secondary flow velocity streamlines at 

= 93-75 (94-47 % of the critical Reynolds number). The flow patterns in these figures 

have been obtained using the Polyflow package. Comparing figures 6.6(a) and 6.7(a) it is 

seen that at a higher Reynolds number there is a slight deviation in the primary velocity flow 

field near the base of the outer cylinder. This deviation is due to centrifugal forces which 

result in the fluid being forced outwards in the r-direction by the motion of the inner 

cylinder. The magnitude of the centrifijgal forces increases with increasing Reynolds number 

and hence we have the distorted primary velocity flow field observed in figure 6.7(a). It is 

seen in figure 6.7(b) that there are six Taylor like vortex cells between the inner and outer 

cylinder walls. The strength of the lowest of these cells is much stronger than that of the 

single cell shown in figure 6.6(b) at only I • 008 % of the critical Reynolds number Moving 

upwards in the region between the inner and outer cylinders the vortex cells in figure 6.7(b) 

altemate in sign and decrease in strength. Similar secondary flow velocity streamlines have 

been produced for a range of Reynolds number flows and show that the number of vortex 

cells will increase with Reynolds number up to the critical Reynolds number where the flow 
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becomes unstable. 

In figure 6.8 we present the normalised shear stress distribution on the inner 

cylinder wail of a narrow gap, medium gap and wide gap geometry for a Newtonian fluid at 

zero Reynolds number. Each stress distribution is normalised with respect to the 

corresponding r^^ shear stress value, obtained from equation (6.2.2), when end effects are 

ignored. It can be seen from this figure that for a given inner cylinder angular velocity the 

shear stresses near the base of the inner cylinder are greater than those predicted from the 

standard theory in which end effects are ignored. The normalised r^^ shear stress 

distribution on the inner cylinder wall of a wide gap geometry is presented for various 

power law fluids, at zero Reynolds number, in figure 6.9. Each stress distribution in this 

figure is normalised with respect to the corresponding r^g shear stress value, given by 

equation (6.2.9), when end effects are ignored. In figure 6.9 it is seen that, as for a 

Newtonian fluid, the shear stresses near the base of the inner cylinder are greater than those 

predicted from the standard theory. It is noted that in this figure the end effect error in the 

shear stress values decreases with decreasing power law index //. Since the shear stresses 

near the base of the inner cylinder are greater than those predicted fi-om the standard theory, 

the fluid will exert a larger torque on the inner cylinder than that predicted from the 

standard theory. This is demonstrated in figure 6.10, where we present the torque exerted 

on the inner cylinder of all three C S R geometries for various power law fluids at zero 

Reynolds number. In this figure the torque is expressed as a percentage error of the value 

predicted from the standard theory in equation (6.2.10). The expected zero percentage error 

in torque for a fluid with constant stress (/i = 0) is also included in figure 6.10. These 

results show that end effects can lead to errors of up to 10%, for the C S R geometries, in the 

steady shear viscosity prediction of fluids. This error decreases with decreasing geometry 

gap and decreasing power law index n. 
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The C S R computer software calculates the steady shear viscosity of a fluid, from the 

applied torque Q and the measured inner cylinder angular velocity Q , using the standard 

theory in which end effects are ignored (equation (6.2.3)). When end effects are included 

the fluid directly above the base of the outer cylinder creates an extra drag on the motion of 

the inner cylinder, causing it to rotate at a slower angular velocity than expected from the 

standard theory. Therefore if the standard theory is used to calculate the shear viscosity of a 

fluid the slower angular velocity will be interpreted as being due to a more viscous fluid. 

Hence when end effects are ignored the shear viscosity of a fluid will be overestimated. 

Figure 6.11 shows the percentage error in torque for a Newtonian fluid for non-zero 

Reynolds number flows below the critical Reynolds number. In this figure we compare the 

torque obtained from the perturbation theory (equation (6.3.34)) with the value obtained 

from Polyflow which includes full fluid inertia effects. It can be seen from this figure that for 

the three C S R geometries the percentage error in torque shows a negligible dependence on 

Reynolds number. Therefore for these geometries fluid inertia effects can be ignored and 

only end effects need to be included in the theory. However fluid inertia effects can be 

important in larger gap geometries. This is demonstrated in figure 6.11 for a 1:2 ratio gap 

geometry in which the perturbation theory percentage error in torque varies from 22% to 

29% over the range of Reynolds numbers considered. For this geometry the perturbation 

theory gives good agreement with the Polyflow results up to 50% of the critical Reynolds 

number. Polyflow results have also shown that fluid inertia effects are negligible for power 

law fluids in the three C S R geometries and therefore the results presented in figure 6.10 are 

also valid for non zero Reynolds number flows. 

We now consider the results for the perturbation theory. On using the non-

dimensional geometry dependent constants and the geometry dependent factors 

and / j in equation (6.3.37) can be calculated. These factors are presented in table 6.1 for 
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the three C S R geometries and the 1:2 ratio gap geometry. 

With End Effects Without End Effects 

/o h /o h 

Narrow Gap 0-973 -4-919 x!0-'° 1 0 

Medium Gap 0-927 4-588 xlO-^ 1 0 

Wide Gap 0-908 3-646 xlO'' I 0 

1:2 ratio Gap 0.820 1-745 xlO'* 1 0 

Table 6.1: Steady shear factors. 

The factors in table 6.1 show that when end effects are included in the theory the shear 

viscosity prediction will be less than that predicted from the standard theory. The reduction 

being 2-7%, 7-3% and 9-2% for the narrow gap, medium gap and wide gap geometries 

respectively. For the three CSR geometries, the end effect factors in table 6.1 confirm the 

results of figure 6.11 that fluid inertia effects are negligible for flows below the critical 

Reynolds number. It is noted that in table 6.1 the factor for the narrow gap geometry is 

negative. On inspection of the narrow gap data which includes full fluid inertia effects, 

presented in figure 6.11, it is found that in comparison to the percentage error in torque at 

zero Reynolds number there is a very small reduction in the percentage error for flows below 

approximately 50% of the critical Reynolds number. For flows above 50% of the critical 

value the percentage error in torque is greater in comparison to that at zero Reynolds 

number. This is consistent with the negative factor obtained for the narrow gap geometry 

from the fluid inenia perturbation theory which is valid for small Reynolds number flows. 

6.6 Flow simulation of a Newtonian fluid in a 1:2 ratio gap geometry 

To determine the limitations of the second order fluid inertia perturbation theory for 
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larger gap geometries we simulate the steady shear flow behaviour of a Newtonian fluid in a 

1:2 ratio gap geometry. On taking into account full fluid inertia effects the torque required 

to rotate the inner cylinder at a prescribed angular velocity Q is determined using Polyflow. 

These torque values can then be used in equation (6.3.37), together with the steady shear 

factors of table 6.1, to establish the influence of concentric cylinder end effects and fluid 

inertia effects on the steady shear viscosity prediction of fluids. On using the torque values 

in the standard formula (equation (6.3.37) with ^ = 1 and ^ = 0) the percentage error in 

shear viscosity prediction is presented as the uncorrected data in figure 6.12. In this figure 

we also present the error in shear viscosity prediction when end effects are taken into 

account (equation (6.3.37) with - 0-820 and ^ = 0) and good agreement is obtained 

with the exact viscosity up to 25% of the critical Reynolds number. When corrected for end 

effects and second order fluid inertia effects (equation (6.3.37) with ^ = 0-820 and 

= 1.745x I0~*) agreement to within 1% of the exact value is obtained for Reynolds 

numbers up to 60% of the critical value. 

6.7 Conclusions 

Using a Newtonian fluid inertia perturbation analysis it has been shown that existing 

shear viscosity formulae can be modified to include end effects and second order fluid inertia 

effects. Results show that end effects produce errors of 2-7%, 7-3% and 9-2% in Newtonian 

shear viscosity predictions for the narrow, medium and wide gap CSR geometries 

respectively. For power law shear thinning fluids these errors decrease with decreasing 

power law index /J. When end effects are included in the steady shear theory fluid inertia 

effects can no longer be ignored. However it is shown that for flows below the critical 

Reynolds number fluid inertia effects are negligible in the three CSR geometries. Using 

simulated Newtonian steady shear data it is shown that correcting for both end effects and 
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second order fluid inertia effects gives improved shear viscosity predictions in wider gap 

geometries where fluid inertia effects are important. 

Some of the work presented in this chapter is included in a paper which has been 

accepted for publication in the Journal of Non-Newtonian Fluid Mechanics. 
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CHAPTER 7 

CONCENTRIC C Y L I N D E R END E F F E C T S AND F L U I D INERTIA 

E F F E C T S ON STEADY SHEAR VISCOSITY PREDICTIONS 

OBTAINED FROM A WEISSENBERG R H E O G O N I O M E T E R 

7.1 Introduction 

In steady shear concentric cylinder flow on a controlled strain Weissenberg 

rheogoniometer, the outer cylinder rotates with constant angular velocity and the inner 

cylinder remains stationary at its equilibrium position. This is in contrast to the steady shear 

flow conditions on a CSR controlled stress rheometer in which the inner cylinder is the 

rotating member. An advantage of the Weissenberg concentric cylinder set up is that the 

flow is significantly more stable than that for the corresponding set up on the CSR 

instrument, particularly for mobile fluids. Therefore for a given fluid and concentric cylinder 

geometry higher Reynolds number flows can be considered on a Weissenberg 

rheogoniometer. Hence shear viscosity measurements of mobile fluids can be obtained at 

high shear rates on this instrument. For the higher Reynolds number flows fluid inertia 

effects may be important in the standard CSR geometries. Therefore in this chapter we 

consider concentric cylinder end eflfects and fluid inertia effects on shear viscosity 

predictions obtained from a Weissenberg rheogoniometer. 

On a commercially available Weissenberg rheogoniometer the calculation of the 

steady shear viscosity of a fluid, in a concentric cylinder geometry, is based on a theory in 

which end effects and fluid inertia effects are ignored (T.A. Instruments [34]). In this 

chapter we consider the same recessed concentric cylinder geometries as those used in 

chapter 6 for the CSR controlled stress rheometer, as shown in figure 6.1. 

The analysis will follow a similar approach to that presented in chapter 6 for a CSR 
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controlled stress rheometer, using a low Reynolds number fluid inertia perturbation analysis 

and Polyflow to solve the relevant equations. From the fluid inertia perturbation theory the 

existing steady shear formulae are modified to include end effects and second order fluid 

inertia effects. These modified formulae can be used as an on line correction for Newtonian 

shear viscosity data obtained from a Weissenberg rheogoniometer. Simulated steady shear 

data will be generated for a Newtonian fluid to establish the limitations of the second order 

fluid inertia perturbation theory. For comparison with the results presented in chapter 6 we 

consider the wide, medium and narrow gap CSR geometries described in section 6.4. 

Attachments have been manufactured at the University of Plymouth to allow the use of the 

CSR concentric cylinder geometries on the Weissenberg rheogoniometer. 

7.2 Steady shear theory 

On a Weissenberg rheogoniometer the outer cylinder is forced to rotate at a 

constant angular velocity Q. The resulting motion of the fluid causes a constant angular 

displacement of the inner cylinder, which is constrained by a torsion bar of stiffness K. We 

denote the torque acting on the inner cylinder, due to the deflection of the torsion bar, by 

CQ which is equal in magnitude to the torque exerted on the inner cylinder due to the 

motion of the fluid. As for the CSR controlled stress rheometer, the present formula for 

calculating the shear viscosity of a fluid on a Weissenberg rheogoniometer is determined 

from a theory in which end effects and fluid inertia effects are ignored. This formula is given 

in equation (6.2.3) where the value of Q is now obtained by multiplying the inner cylinder 

displacement by the torsion bar stiffness K. For Newtonian fluids a low Reynolds number 

fluid inertia perturbation analysis is used to determine a formula for predicting the shear 

viscosity of a fluid which includes end effects and second order fluid inertia effects. 
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7.2.1 Governing equations and boundary conditions 

When the outer cylinder rotates at a constant angular velocity the resulting motion 

of the fluid produces a constant angular displacement of the inner cylinder. Therefore the 

analysis will consider the inner cylinder to remain stationary while the outer cylinder rotates 

at a prescribed angular velocity Q.. 

The physical dimensions of the flow domain are identical to those shown in figure 

6.2 for the concentric cylinder geometry on a CSR controlled stress rheometer. We shall 

again assume that the *free surface' boundaries AB and CD remain in their horizontal 

positions and therefore the boundary conditions on all six boundaries of the flow domain are 

identical to those described in section 6.2.2. However it is noted that boundaries OE and 

D E are now moving surfaces and boundary BC is the stationary surface. 

For steady shear concentric cylinder flow on a Weissenberg rheogoniometer the 

governing equations are identical to those presented in section 6.2.2 for a CSR controlled 

stress rheometer. These equations ((6.2.4) to (6.2.6)) are solved using the numerical 

techniques discussed in chapter 6 and the torque exerted on the inner cylinder due to the 

motion of the fluid can then be calculated using equation (6.2.7) with a sign change. This 

torque is then compared with the value obtained from the theory in which end effects and 

fluid inertia effects are ignored. 

7.2.2 Stability of concentric cylinder flow 

The critical Reynolds number at which steady shear concentric cylinder flow on a 

Weissenberg rheogoniometer becomes unstable is much greater than the corresponding 

value for a CSR controlled stress rheometer (Bird et al [2]). This is due to the flow 

situation where the outer cylinder rotates being significantly more stable than the case where 

the inner cylinder rotates. An explanation for this increase in stability now follows. 
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With reference to figure 6.2 the centrifugal force on a fluid particle vAW act outwards 

in the positive r-direction. When the outer cylinder rotates the centrifugal force acting on a 

fluid particle increases in the radial direction. Therefore a fluid particle near the rotating 

outer surface will not move inwards since it has a greater centrifugal force acting on it than 

particles nearer the stationary inner surface. The motion of a fluid particle in the outwards 

direction will also be resisted, since particles nearer the moving outer surface have a greater 

centrifugal force. Therefore the centrifugal forces strongly stabilise the flow and the 

transition to turbulent flow, when the outer cylinder rotates, will occur at a much greater 

Reynolds number than in the system in which the inner cylinder rotates. It is noted that 

when the inner cylinder rotates centrifugal forces will introduce an instability into the flow. 

7.3 Fluid inertia perturbation theory for a Newtonian fluid 

In this analysis we consider a Newtonian fluid in a concentric cylinder geometry 

where the outer cylinder rotates at a constant angular velocity Q and the inner cylinder 

remains stationary. The fluid inertia perturbation analysis is carried out in exactly the same 

manner as described in section 6.3 for the steady shear flow of Newtonian fluids on a CSR 

controlled stress rheometer. From the perturbation theory we will obtain equations (6.3.19) 

to (6.3.22) which must be solved subject to the relevant boundary conditions. The 

Weissenberg rheogoniometer boundary conditions for the perturbation theory variables are 

identical to those used in section 6.3 except for the zero order velocity component Vgo{r,z) 

which is given by 

v̂o = 0 on boundaries OA and BC. 

dvg^jdz = 0 on free surface boundaries AB and CD. 

v^Q= r on the moving boundaries D E and OE 

(7.3 J ) 

For a Weissenberg rheogoniometer the Newtonian shear viscosity of a fluid can be 

calculated using equation (6.3.37) where is now obtained by multiplying the inner 
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cylinder displacement by the torsion bar stififtiess K. It is noted that for a Weissenberg 

rheogoniometer the relationship between and 0^ in equation (6.3.37) is now given by 

/o =-2/?r//[/?or,(r2^-r,^)], where the geometry dependent constant fi^ is defined in 

equation (6.3.35). The perturbation theory equations are solved using the finite difference 

method described in section 6.4. Using the finite difference solution the geometry dependent 

factors /o and in equation (6.3.37) can be evaluated for the steady shear concentric 

cylinder flow of Newtonian fluids on a Weissenberg rheogoniometer. 

7.4 Relationship between concentric cylinder end effects on a Weissenberg 

rheogoniometer and a CSR controlled stress rheometer 

When fluid inertia effects are included in the theory there is no direct relationship 

between the velocity distributions on the Weissenberg and CSR instruments. However we 

shall now show that there is a direct relationship between these instruments when fluid 

inertia effects are ignored. 

We denote the velocity distribution for steady shear concentric cylinder flow on the 

CSR controlled stress rheometer and the Weissenberg rheogoniometer by and 

respectively. When fluid inertia effects are ignored both and must satisfy L[v\ - 0 

over the same flow domains as shown in figures 7.1(a) and 7.1(b) respectively. 

dz 
= 0 

dz 
= 0 

dz 
= 0 

V =0 dz 
= 0 

v.. =0 

V =0 

Figure 7.1(a):-
Boundary conditions for 

Figure 7.1(b):-
Boundary conditions for 
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In these figures we also include the boundary conditions that must be satisfied by and 

v^. It can be seen that a direct relationship between the boundary conditions for and 

is given by =rQ-v^. This relationship implies that if £ v̂ ] = 0 then it follows that 

L [ V ^ =0 in which case = r Q - is valid over the whole flow domain. It then follows 

from equation (6.2.8) that the r̂ ^ shear stresses are related by r,^^ = -t,o^y which implies 

that when fluid inertia effects are ignored the end effect errors on viscosity prediction will 

be idetitical on both instruments. 

7.5 Steady shear results 

Steady shear concentric cylinder end effects and fluid inertia effects on a 

Weissenberg rheogoniometer are considered for the three CSR geometries described in 

section 6.4. The meshes used in the finite difference method and the Polyflow package are 

identical to those used to generate the results presented in section 6.5 for a CSR controlled 

stress rheometer. 

When fluid inertia effects are included in the theory of steady shear concentric 

cylinder flow there is a critical value of the Reynolds number above which the flow will be 

unstable (Bird ei al [2]). In the fluid inertia perturbation theory the Reynolds number 

was defined by equation (6.3.8). Bird et al [2] define a Newtonian Reynolds number for 

concentric cylinder flow where the outer cylinder rotates with constant angular velocity and 

the inner cylinder is stationary as 

7 ? . = ^ (7.5.1) 

For convenience, in this chapter we shall present the results in terms of this Reynolds 

number. Bird ei al [2] presented a graph of the critical value of the Reynolds number, at 
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which the flow becomes unstable, as a function of r^jr^. This graph shows that for the three 

CSR geometries the flow will be stable for Reynolds numbers up to approximately 50000. 

However for these geometries the Polyflow numerical scheme is only convergent up to a 

Reynolds numbers of approximately 3500 and therefore we shall only present results for 

Reynolds numbers below this value. 

In figures 7.2(a) and 7.2(b) we present the primary velocity flow contours and 

secondary flow velocity streamlines respectively in a wide gap geometry for a Newtonian 

fluid at a low Reynolds number (7?̂  = 1). These flow patterns have been produced using the 

velocity distributions obtained from the finite difference method in equation (6.3.16). It is 

seen in figure 7.2 (a) that the primary velocity flow distribution deviates from the uniform 

distribution obtained when end effects are ignored which, from equation (6.2.8), will result 

in a change in the shear stresses used to calculate the torque Cp. Figure 7.2(b) shows a 

weak single Taylor like vortex cell (Taylor [28]) between the inner and outer cylinder walls. 

The streamlines in this figure are opposite in sign to those of the single vortex cell presented 

in figure 6.6(b) for concentric cylinder flow on a CSR controlled stress rheometer. In 

figures 7.3(a) and 7.3(b) we present the corresponding primary velocity flow contours and 

secondary flow velocity streamlines at a higher Reynolds number (/?, = 3445). The flow 

patterns in these figures have been obtained using the Polyflow package. Comparing figures 

7.2(a) and 7.3(a) it is seen that at a higher Reynolds number there is a deviation in the 

primary velocity flow field near the base of the outer cylinder. In figure 7.3(b) it is seen thai, 

as for low Reynolds numbers, there is a single Taylor like vortex cell between the inner and 

outer cylinder walls. It is noted that at a higher Reynolds number the strength of the vortex 

cell has increased and become more triangular in shape. Similar secondary flow velocity 

streamlines have been produced for a range of Reynolds numbers up to = 3445 and all 

show a single Taylor like vortex cell which increases in strength and becomes more 
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triangular in shape with increasing Reynolds number. 

The Weissenberg computer software calculates the steady shear viscosity of a fluid 

from the measured outer cylinder angular velocity Q and torque Q using the standard 

theory in which end effects are ignored. When including end effects, the rotating base of the 

outer cylinder member will result in the fluid exerting a greater torque on the inner cylinder 

than that predicted from the standard theory. Therefore when concentric cylinder end 

effects are ignored on a Weissenberg rheogoniometer the steady shear viscosity of a fluid 

will be overestimated. 

In section 7.4 it was shown that when fluid inertia effects are ignored the end effect 

errors for a Weissenberg rheogoniometer are identical to those for the CSR instrument. 

Therefore, when fluid inertia effects are ignored, the normalised r,^ shear stress 

distributions on the inner cylinder wall for a Weissenberg rheogoniometer are identical to 

those presented for the CSR instrument in figures 6.8 and 6.9. 

In figure 7.4 we present the percentage error in torque for a Newtonian fluid for 

non-zero Reynolds number flows in the three CSR geometries. It can be seen from this 

figure that for the wide gap geometry the percentage error in torque varies from 10% to 

39% over the range of Reynolds numbers considered. The corresponding variation in torque 

for the medium gap geometry is 8% to 27% and for the narrow gap geometry it is 2-7% to 

6-7%. Therefore at high Reynolds numbers fluid inertia effects cannot be ignored when end 

effects are included in the theory. 

We now consider the effect of fluid inertia on the steady shear viscosity prediction 

of power law fluids in the three CSR geometries. A Reynolds number for power law fluids, 

which is consistent with the Newtonian value when w = 1, can be defined as 

R . = ^ (7.5.2) 
n-\ 

143 



where y is a typical shear rate of the steady shear concentric cylinder flow, 

A typical shear rate for steady shear concentric cylinder flow is given by y =r^O./{r^ - / ; ) 

and the Reynolds number can then be expressed as 

R. = (7.5.3) 

It is noted that on setting n = \ in equation (7.5.3) we obtain the Reynolds number for 

Newtonian fluids as defined in equation (7.5.1). 

In figure 7.5 we present the percentage error in torque for non-zero Reynolds 

number flows of various power law fluids in the wide gap geometry. It is seen in this figure 

that for all the power law fluids considered, the percentage error in torque has a similar rate 

of increase with Reynolds number. The percentage error in torque for non-zero Reynolds 

number flows in the medium gap and narrow gap geometries is presented in figures 7.6 and 

7.7 respectively. In both of these figures we see that the percentage error in torque 

increases at a similar rate with Reynolds number for all values of the power law index //. 

These results indicate that at high Reynolds numbers fluid inertia effects are important in 

concentric cylinder shear viscosity predictions of power law fluids on a Weissenberg 

rheogoniometer. It is noted that end effects are less important for highly shear thinning 

fluids. 

We now consider the results for the perturbation theory. The velocity distributions 

obtained from the solution to the finite difference equations in section 6.4 are used to 

calculate the geometry dependent factors and required in equation (6.3.37). These 

factors for steady shear concentric cylinder flow on a Weissenberg rheogoniometer are 

presented in table 7.1. 
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With End Effects Without End Effects 

/o h /o h 
Narrow Gap 0-973 3-745 xlO ' 1 0 

Medium Gap 0-927 1-663 xlO ' 1 0 

Wide Gap 0-908 1041 xlO-̂  1 0 

Table 7.1: Steady shear factors. 

It is noted that as expected the factors in table-7.1 are identical to those presented, for 

the three CSR geometries, in table 6.1 for a CSR controlled stress rheometer. Comparing 

the factors of tables 6.1 and 7.1, in which end effects are included, it is seen that 

concentric cylinder second order fluid inertia effects on a Weissenberg rheogoniometer are 

an order of magnitude higher than those for a CSR controlled stress rheometer. It should be 

noted that the and factors in table 7.1 can be used in equation (6.3.37) to calculate 

the shear viscosity of a fluid. Although this equation is expressed in terms of the Reynolds 

number defined by equation (6.3.8), the factor can easily be modified so that equation 

(6.3.37) is valid for the Reynolds number defined in equation (7.5.1). 

7.6 Flow simulation of a Newtonian fluid in the three C S R geometries 

In order to determine the limitations of the second order fluid inertia perturbation 

theory we simulate the steady shear flow behaviour of a Newtonian fluid in the three CSR 

geometries. On taking into account full fluid inertia effects, the torque exerted on the inner 

cylinder due to the motion of the fluid for a prescribed outer cylinder angular velocity Q is 

determined using Polyflow. This torque is then used as the value in equation (6!3.37), 

together with the steady shear factors of table 7.1, to establish the magnitude of end effects 
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and fluid inertia effects on the steady shear viscosity prediction of Newtonian fluids. 

On using the torque values for the wide gap geometry in the standard formula 

(equation (6.3.37) with ^ = 1 and ^^=0) the percentage error in shear viscosity 

prediction is presented as the uncorrected data in figure 7.8. In this figure we also present 

the percentage error in shear viscosity prediction when end effects are taken into account 

(equation (6.3.37) with = 0-908 and = 0) and agreement is obtained to within 1% of 

the exact value for Reynolds numbers below 150. Correcting for end effects and second 

order fluid inertia effects (equation (6.3.37) with = 0-908 and = 1-041 x 10"̂ ) gives 

agreement to within 1% of the exact viscosity data up to a Reynolds number of 270. 

The torque values obtained for a Newtonian fluid in the medium gap geometry are 

used in the standard formula (equation (6.3.37) with = 1 and ^ = 0) and the percentage 

error in shear viscosity prediction is presented as the uncorrected data in figure 7.9. On 

correcting for end effects (equation (6.3.37) with =0-927 and ^ = 0) agreement is 

obtained to within 1% of the exact viscosity data up to Reynolds numbers of 300. 

Correcting for end effects and second order fluid inertia effects (equation (6.3.37) with 

/o = 0 - 927 and = I • 663 x 10"̂ ) gives agreement to within 1 % of the exact value up to a 

Reynolds number of 600. 

Using the torque values obtained for the narrow gap geometry in the standard 

formula (equation (6.3.37) with fo = \ and / j = 0) the percentage error in shear viscosity 

prediction is presented as the uncorrected data in figure 7.10. In this figure we also present 

data corrected for end eflfects (equation (6.3.37) with =0-973 and = 0) and data 

corrected for both end effects and second order fluid inertia effects (equation (6.3.37) with 

/o =0-973 and = 3 • 745 x 10"'). In figure 7.10 it is seen that when corrected for end 

effects and second order fluid inertia effects agreement to within 0-5% of the exact value is 
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obtained for the full range of Reynolds numbers considered. 

7.7 Conclusions 

For a Weissenberg rheogoniometer it is shown that when fluid inertia effects are 

ignored, the concentric cylinder end effect produces errors of 2-7%, 7-3% and 9-2% in 

Newtonian shear viscosity predictions for the narrow, medium and wide gap CSR 

geometries respectively. These errors increase with increasing Reynolds number. For power 

law shear thinning fluids the error in shear viscosity prediction decreases with decreasing 

power law index //. However, for a given power law fluid, it is seen that the error in shear 

viscosity prediction increases with increasing Reynolds number. Using a perturbation 

analysis the existing formulae for calculating the shear viscosity of a fluid on a Weissenberg 

rheogoniometer can be modified to include end eflfects and second order fluid inertia effects. 

Numerically simulated steady shear data for Newtonian fluids has shown that shear viscosity 

predictions in the three CSR geometries are significantly improved when end effects and 

second order fluid inertia effects are taken into account. It is seen that the modified shear 

viscosity formulae give agreement to within 1% of the exact Newtonian viscosity data up to 

Reynolds numbers of 270, 600 and 3500 for the wide, medium and narrow gap CSR 

geometries respectively. 
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CHAPTER 8 

CONCENTRIC C Y L I N D E R END E F F E C T S AND F L U I D INERTIA 

E F F E C T S ON C O M P L E X VISCOSITY PREDICTIONS IN 

C O N T R O L L E D STRESS R H E O M E T R Y 

8.1 Introduction 

An oscillatory shear theory for predicting the complex viscosity of a fluid using a 

controlled stress rheometer was first developed by Holder [35]. Formulae which included 

first order fluid inertia effects were produced for both the cone and plate and the parallel 

plate geometries. Using this theory Jones el al [36] showed that the controlled stress 

rheometer could be used to produce meaningful complex viscosity data. Jones et al [37] 

extended the oscillatory shear theory to the concentric cylinder geometry, producing 

formulae for predicting the complex viscosity of a fluid which included first order fluid 

inertia effects. These workers carried out experiments on viscoelastic fluids and compared 

the complex viscosity data obtained using a concentric cylinder geometry with that obtained 

using the cone and plate and the parallel plate geometries. It was concluded that fluid inertia 

effects must be taken into account in the concentric cylinder geometry especially for high-

density mobile fluids. The theory for the three geometries previously discussed was 

extended to include both first order and second order fluid inertia effects by Golden [21]. It 

is shown by this worker that second order fluid inertia effects in CSR concentric cylinder 

geometries can be important in oscillatory shear experiments. Golden [21] obtained 

experimental complex viscosity data using the parallel plate geometry, the cone and plate 

geometry and various concentric cylinder geometries. Some discrepancies were observed 

between the concentric cylinder data and the data obtained from the parallel plate and cone 

and plate geometries. These discrepancies varied with the concentric cylinder gap and 
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Golden [21] suggested that they could be due to end effects. 

In this chapter we consider concentric cylinder end effects and fluid inertia effects on 

complex viscosity predictions obtained using a CSR controlled stress rheometer. The 

concentric cylinder geometries employed in oscillatory shear experiments on the CSR 

controlled stress rheometer are identical to those used for steady shear. On a CSR 

controlled stress rheometer the complex viscosity prediction of a fluid is based on infinite 

cylinder theory in which end effects are ignored (Golden [21]). Using a perturbation analysis 

which is valid for small fluid inertia effects, this worker has produced formulae for 

determining the complex viscosity of a fluid which include first order and second order fluid 

inertia effects. In this chapter a similar approach to Golden [21] is used to develop new 

concentric cylinder formulae, for predicting the complex viscosity of a fluid on a CSR 

controlled stress rheometer, which include both end effects and second order fluid inertia 

effects. The equations obtained from the perturbation theory are solved using a finite 

difference method with an irregular mesh, as described in section 6.4. 

A numerical simulation of the oscillatory shear flow behaviour of a Newtonian fluid 

and a single element Maxwell fluid in a concentric cylinder geometry will be performed. 

From the simulation we will produce complex viscosity data which has not been corrected 

for end effects and fluid inertia effects. Using this data a comparison in complex viscosity 

predictions can be made between the standard formulae (Golden [21]) and the formulae 

modified to include end effects. We shall also consider the frequency range of applicability 

of the second order fluid inertia correction formulae which include end effects. 

8.2 Oscillatory shear theory 

A generalised linear viscoelastic theory which takes into account end effects is 

developed for the concentric cylinder geometry on a CSR controlled stress rheometer. An 
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oscillatory torque of amplitude Q and frequency / (cycles/sec) is applied to the inner 

cylinder forcing it to make small amplitude oscillations of amplitude with a phase lag c 

behind the applied torque. The outer cylinder remains stationary. The amplitude and 

phase lag c are measured by the rheometer and together with the applied amplitude Q and 

frequency / can be used to calculate the complex viscosity of a fluid. At present this 

viscosity prediction is determined from infinite cylinder theory in which end effects are 

ignored (Golden [21]). 

In the analysis we shall consider the inner cylinder to oscillate with amplitude at 

a prescribed frequency / It is assumed that the amplitude of oscillation of the inner cylinder 

is sufficiently small to ensure that the flow is in the linear viscoelastic region and hence non­

linear fluid inertia terms can be ignored in the equations of motion. Referring to a set of 

cylindrical polar coordinates (r,0,z) we may assume a velocity distribution for the 

axisymmetric flow of the form (Jones et al [37]) 

V. = 0 , v , = v ( r , 2 ) e ' " , = 0 (8.2.1) 

where (o-2nf (radians/sec) is the angular frequency of oscillation and the real part of 

these quantities is implied. 

The velocity distribution of equation (8.2.1) gives two non-zero components of the shear 

stress tensor as 

^nr-— 
ar \rJ az 

where 77' is the complex viscosity of the fluid. 

Throughout the analysis the following non-dimensional variables will be used 

r, r, r, r, r^ict^X^ 
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Substituting equations (8.2.1) and (8.2.2) into the relevant stress equations o f motion (Bird 

et a/ [1]) and using the non-dimensional variables of equation (8.2.3) we have 

(L + (ar , )^) [v]=0 (8.2.4) 

where the complex parameter a is defined in equation (4.2.4) and the operator L is the $ 

component of the Laplacian operator of a vector field which is defined as 

i , | , 4 f - 4 . A , v . - ± (8,2.5, 

In equations (8.2.4) and (8.2.5) the non-dimensional * notation is implied but has been 

omitted for convenience. 

With reference to figure 6.2 and using equation (8.2.1) we consider the boundary 

conditions for the velocity fijnction v(r ,z) . On the stationary boundaries OE and DE and 

the moving boundary BC the no slip condition is imposed. Therefore v = 0 on boundaries 

OE and DE and on boundary BC we have v = 1. For the CSR geometries considered in this 

chapter it has been observed experimentally, that the *free surface' boundaries AB and CD 

remain in a horizontal position for small amplitude oscillatory shear flow. Therefore, as for 

the analysis of steady shear concentric cylinder flow, we shall impose the condition that the 

'free surface' boundaries remain in their horizontal positions. On the 'free surface' the shear 

stress is zero and hence = 0. Therefore from equation (8.2.2) the condition dvjdz - 0 

is applied on boundaries AB and CD. There is no ^-direction fluid motion on the line of 

symmetry and therefore on boundary OA we have v = 0. In summary the boundary 

conditions are given by 

V = 0 on boundaries OA, OE and DE. 

dv/dz = 0 on free surface boundaries AB and CD. ^ (8.2.6) 

V = I on the moving boundary BC. 
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The equation of motion of the inner cylinder can be written as (Golden [21]) 

C^e'^'^''^ +Ico^X^e''' =C^ (8.2.7) 

where / is the moment of inertia of the oscillating member and is the torque exerted on 

the inner cylinder due to the motion of the fluid, given by equation (6.2.7). Using equations 

(8.2.1), (8.2.2) and (8.2.3) the torque C^,, for a generalised linear viscoelastic fluid, can be 

expressed as 

3 • Jan 
dv V 

dr r. 
dz (8.2.8) 

On substituting equation (8.2.8) into equation (8.2.7) we have 

^ ^ + / ( y ' = - 2 ; r / ^ y r , V 
V 

dz (8.2.9) 

The complex viscosity t] of the fluid can be obtained from the solution to the coupled 

equations (8.2.4) and (8.2.9) subject to the boundary conditions in equation (8.2.6). These 

equations would have to be solved using a suitable numerical iterative technique. However 

this is not a simple task and therefore in the following section we shall use a perturbation 

analysis to solve these equations, which will be valid for the case when fluid inertia effects 

are small. 

8.3 Fluid inertia perturbation theory for a generalised linear viscoelastic fluid 

The perturbation analysis will follow a similar procedure to Golden [21] except that 

end effects will now be included in the theory. We consider a second order power series 

expansion of the function v ( r , 2 ) in terms of the non-dimensional parameter (ar,)^ as 

v ( / ' , 2 ) = v , ( r , r ) + ( a r , ) ^v , ( r . 2 ) + (ar , )%, ( r ,z ) (8.3.1) 

Substituting the expansion of equation (8.3.1) into equation (8.2.4) and comparing 

152 



coefficients of the (ar.y terms gives 

Zero order 

First order . 

Second order. 

4 ^ 0 ] = 0 

4 » ' > ] = -» 'o 

(8.3.2) 

(8.3.3) 

(8.3.4) 

On considering the boundary conditions in equation (8.2.6) and the series expansion 

in equation (8.3.1) the boundary conditions for the functions ^^{r^z) ,v^{r^z) and V 2 ( r , 2 ) 

can be determined. For »\,(r.r) we have 

VQ = 0 on boundaries OA, OE and DE. 

dv^jdz = 0 on free surface boundaries AB and CD. 

VQ = I on the moving boundary BC. 

The boundary conditions for v,(r,z) and V3( / ' ,z ) are given by 

V, = 1% = 0 on boundaries OA, OE, DE and BC. 

(8.3.5) 

(8.3.6) 
dvjdz - dv^Jdz= 0 on free surface boundaries AB and CD.J 

The values of the boundary conditions for the functions V Q ( / - , Z ) , v, (r ,z) and V 2 ( r , z ) are 

all real quantities. It then follows that the solutions to equations (8.3.2) to (8.3.4) wil l also 

be real quantities. These equations are to be solved using a finite difference method with an 

irregular mesh, which will be described in section 8.4. 

On substitution of the series expansion for the function v(r,z) in equation (8.3.1) 

into the equation of motion of the inner cylinder, equation (8.2.9), we have 

^ Ico' = 2nicor,'fj'[p,Har,f p,^{arX P,] (8-3.7) 

where 
< dr r , 

dz / ; ; = 0,1,2 (8.3.8) 

are non-dimensional geometry dependent constants. 

We define 77* to be the complex viscosity of the fluid when fluid inertia effects are ignored. 
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TJI can then be obtained from equation (8.3.7) by setting a = 0 and replacing TJ* by 7* to 

give 

7̂0 (8.3.9) 

It is convenient to express this formula in the form 

7o Anicohr^r^ 
+ 1(0' (8.3.10) 

where h is the height of the inner cylinder and / Q irlhr^ /[/?o''i('"2' - ' ' 1 ) ] ) "S a geometry 

dependent end effect correction factor. It should be noted that in this form the factor / , has 

a value of 1 when end effects are ignored. In this case equation (8.3.10) then becomes the 

standard concentric cylinder geometry formula for calculating the complex viscosity of the 

fluid (Golden [21]). We define the complex parameter a\ as 

(8.3.11) 
'7o 

On using equations (8.3.7), (8.3.10) and (8.3.11) a relationship between T]'^ and rf is given 

by 

'7o = '7 i + | ^ ( « o ' - , ) ^ 4 - H | ^ ( « o ' - . r % (8.3.12) 

In order to determine an expression for rj' in terms of TJI from this equation we expand t]' 

as a second order power series in the non-dimensional parameter {agr^y given by 

On substituting equation (8.3.13) into equation (8.3.12) we obtain 

(8.3.13) 

'7o = ' 7 ; + ( « o ' - i ) ' + ( « o ' - , r 
0 J 

(8.3.14) 

where terms of order {a^^r^Y and higher have been neglected. 
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Comparing coefficients of the (a^r^f terms in equation (8.3.14) we can obtain T]\ and 7]\ 

which on substitution into equation (8.3.13) give 

7 =^70 
PQ PQ 

(8.3.15) 

On using equation (8.3.11) we can write 

^• = ; 7 ; - / , / e . p r , ^ - / , ^ ^ (8.3.16) 

where / , =-/?,//?(, and / , =-/?;//?o are non dimensional geometry dependent factors. 

Using the numerical solutions to equations (8.3.2) to (8.3.4) the non-dimensional geometry 

dependent constants p^, /?, and (5^ can be determined from equation (8.3.8). The 

geometry dependent factors / g . / , and can then be calculated. 

Equation (8.3.16) is the modified formula for calculating the complex viscosity of a 

fluid which corrects for both end effects and second order fluid inertia effects. This equation 

takes a similar form to the second order fluid inertia correction determined by Golden [21] 

in which end effects are ignored. It is noted that ;/* in equation (8.3.16) is known from 

equation (8.3.10). The / , and factors in equation (8.3.16) can be evaluated for the case 

when end effects are ignored from the analytical expressions o f Golden [21]. In order to 

establish the limitations of the second order fluid inertia perturbation theory, we shall 

simulate the oscillatory shear flow behaviour of a Newtonian fluid and a single element 

Maxwell fluid on a controlled stress rheometer for the three CSR geometries. 

8.4 Finite difference method of solution for (he perturbation theory equations 

Equations (8.3.2) to (8.3.4) obtained from the fluid inertia perturbation theory are to 

be solved using a finite difference method. With reference to figure 6.1 we wish to use a 

finer mesh near the recessed end (comer B) where the greatest shear stress variation occurs. 

155 



Therefore an irregular mesh in which the steplength varies with a geometric progression 

ratio is used, as described in section 6.4. The whole flow domain is separated into three sub-

domains, as shown in figure 6.4, and the physical domain (r .z) is transformed to a 

computational plane (x,_v) using equations (6.4.1) to (6.4.3). We let the functions ^^(r.z), 

v,(r,z) and v^{r,z) be transformed to v^^x^y), v^^{x,y) and V2^(r .> ' ) respectively for 

s= 1,2,3. The finite difference method of solution for each of these velocity functions is 

now described. 

8.4.1 Finite difference equations for the velocity-function »'o(/',z) 

The transformed velocity function V Q ^ ( X , ^ ) over the xy-plane is denoted at each 

meshpoint (J, J) by v̂ ^ . It is noted that equation (8.3.2). is of the same form as equation 

(6.3.19) with identical boundary conditions. We can therefore use the finite difference 

equations presented in section 6.4 (equations (6.4.13), (6.4.17) and (6.4.20)) to obtain the 

solution of equation (8.3.2). As before we impose equation (6.4.15) on the free surface 

boundaries AB and CD and use equations (6.4.19) and (6.4.22) to match the finite 

difference equations across the interfaces between each sub-domain. The iterative procedure 

presented in appendix 6.1 can be used to solve the finite difference equations discussed in 

this section. 

8.4.2 Finite difTerence equations for the velocity function v, ( r , i ) 

We denote the transformed velocity function v^^{x,y) over the xy-plane at each 

meshpoint { i j ) by v,̂  . The lefl hand side of equation (8.3.3) has the same operator as 

the !ef\ hand side of equation (6.3.19). It is noted that the right hand side of equation (8.3.3) 

is known at every meshpoint from the finite difference solution of v^{r,z). Therefore on 
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m o d i f y i n g equa t ion ( 6 , 4 . 1 3 ) to inc lude the non -homogeneous t e r m v ,̂̂  the finite 

d i f fe rence equat ions for v,^ are g iven by 

''J 

w h e r e / = I to - 1 and j = \ to fo r .v = 1 , 3 

/ = I to - 1 and j = \ to / / , - 1 fo r ^ = 2 

a n d the d i sc re te func t ions * J , ( / ) , A , ( / ) , 0 , (7 ) , c / , ( y ) and e^(ij) a re g i v e n in equa t ion 

( 6 . 4 . 1 4 ) . 

T h e cond i t i on dvjdz = 0 is to be appl ied on the f ree su r face b o u n d a r i e s A B and 

C D . A s desc r ibed in sect ion 6.4.3 the ve loc i ty v,^ on these bounda r i es w i l l sat is fy the 

cond i t i on 

(8 4 . 2 ) 

f o r / •= 1 to w , - l ( ^ = 1 , 3 ) . 

M o d i f y i n g equat ion (6 .4 .17 ) to inc lude the n o n - h o m o g e n e o u s te rm v^j ^ ^ g i ves the 

finite d i f fe rence equat ions for v,, , on the in ter face be tween s u b - d o m a i n s 1 and 2 , as 

f o r j = \ to / I , - 1 , w h e r e the d iscrete func t ions , . c ^ C / ) , ^^^ (y ) a n d e^{j) a re 

g i v e n in equa t ion ( 6 . 4 . 1 8 ) . I n order to m a t c h the finite d i f fe rence equa t i ons a c r o s s the 

in ter face be tween sub-doma ins 1 and 2 w e let v, = v f o r 7 = 1 to « , - 1 w h e n the 

va lues o f v., have been obtained f r o m equat ion ( 8 .4 .3 ) . 

O n m o d i f y i n g equat ion ( 6 . 4 . 2 0 ) to inc lude the n o n - h o m o g e n e o u s t e r m v^^ _^ w e 

obta in the finite d i f fe rence equat ions for v^^ , on the in ter face b e t w e e n s u b - d o m a i n s 2 
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and 3, as 

V , , = — ^ - — a„ (/)v,, +b (/)v,, 4-c V , - +^y^ v., +v. , (8.4.4) 

for / = 1 to /Wj - 1 , where the discrete fijnctions ( / ) , (/) y c^, and (/) are 

given in equation (6.4.21). We match the finite difference equations across the interface 

between sub-domains 2 and 3 by letting v,3 ^ = for / = I to ni^ - I when the values 

o f have been obtained from equation (8.4.4). 

The iterative procedure for solving the finite difference equations presented in this 

section is given in appendix 8.1. 

8.4.3 Finite difTerence equations for the velocity function V 2 ( r , 2 ) 

The transformed velocity function v^^(x,y) over the xy-plane is denoted at each 

meshpoint (/,y) by . From equations (8.3.3) and (8.3.4) it is seen that the relationship 

between Vo(r,z) and v,(r,z) is identical to the relationship between v,(/',z) and V 2 ( r , z ) . I t 

is noted that that v^{r,z) and v^ir,z) are subject to the same boundary conditions. 

Therefore the finite difference equations for v̂ ^ will take the same form as those for 

v,̂  in equation (8.4.1) and are given by 

where / = I to nt^ - 1 and J = \ to for 5 = 1 , 3 

/ = I to m^-\ and j = \ to / i , - 1 for 5 = 2 

and the discrete functions cr^(/), A,(0» ^^,C/). ^xC/) ^si'>J) given in equation 

(6.4.14). In equation (8.4.5) the velocity v̂ ^ must satisfy the condition 
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V, = v,^ (8.4.6) 

for / = 1 to m^- \ ( ^ = 1,3). 

For meshpoints on the interface between sub-domains 1 and 2, the finite difference 

equations for v ,̂ will take the same form as those for v,, in equation (8.4.3) and are 

given by 

for y = l to « , - 1 , where the discrete fijnctions . , c ^ ( y ) . ^/^(y) and e^O") are 

given in equation (6.4.18). The finite difference equations are matched across the interface 

between sub-domains 1 and 2 by letting ^ 2 2 0 = ^ 2 1 ^^r j = \ to / i , - 1 when the values 

of V j , have been obtained from equation (8.4.7). 

The finite difference equations for v̂ ^ , on the interface between sub-domains 2 

and 3, will take the same form as those for v in equation (8.4.4) and are given by 
I . " ! 

Vj-y = ^ ^A0^7-, (0^25 +^r„ 2̂3 +'^n, 2̂2 "̂ 1̂2 (8.4.8) 
rijV y 

for / = 1 to / W 2 - I , where the discrete functions a„^(/). ^„^(0» ^n, > and e^(/) are 

given in equation (6.4.21). In order to match the finite difference equations across the 

interface between sub-domains 2 and 3 we let v,, = v,, for i = I to /n, - I when the 

values of have been obtained from equation (8.4.8). 

i.nj 

The iterative procedure for solving the finite difference equations presented in this 

section is given in appendix 8.2. 
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8.4.4 Calculation of the geometry dependent constants /7„ f rom the finite difference 

solutions for v ^ ( r , z ) , V | ( r , z ) and V j ( r , 2 ) 

In equation (8.3.7) the motion of the inner cylinder is expressed in terms of the non-

dimensional geometry dependent constants fi^. and /? j . These constants can be 

determined from the finite difference solutions for the velocity distributions VQ(r , r ) , v,(r,z) 

and V2( r ,z ) using equations (6.4.62) and (6.4.63) for /w = 0,1,2 and the method described 

in section 6.4.7. 

8.5 Results for the fluid inertia perturbation theory 

End effects and fluid inertia effects in concentric cylinder oscillatory shear flows are 

considered for the same three CSR geometries as for steady shear flow in chapter 6. 

Therefore the finite difference equations presented in section 8.4 are solved using 160x160 

meshes as described in section 6.4.8. It is noted that equation (8.3.2) for v^^r.z) in the 

oscillatory shear perturbation analysis is of the same form as equation (6.3.19) for v^o(r.2) 

in the steady shear perturbation analysis. The velocity fijnctions v^^(r,z) and v^Q(r,z) must 

also satisfy the same boundary conditions. Therefore, for a given concentric cylinder 

geometry, steady shear and oscillatory shear end effects will be identical when fluid inertia 

effects are ignored. 

From the numerical solution of the equations obtained from the perturbation theory, 

the non-dimensional geometry dependent constants /?, and /?j are determined and the 

geometry dependent factors / ( , , / , and / j required in equation (8.3.16) are then known. 

These geometry dependent factors are presented in table 8.1 for the three CSR geometries. 
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With End EflFects Without End Effects 

/o /. h /o /. h 

Narrow Gap 0-973 4-021 x lO' 3-937 X10"* 1 4-152x10' 4 088 xlO-^ 

Medium Gap 0-927 2-725 xlO-^ 2-576x10^ 1 3016x10'^ 2-918 xlO^ 

Wide Gap 0-908 5-932 X10'̂  1-612 xlO'^ 1 6-811 xlO'^ 1-919 xlO'^ 

Table 8.1:- Oscillatory shear factors. 

In this table we also present the geometry dependent factors when end effects are ignored, 

which have been evaluated from the analytical expressions of Golden [21]. It should be 

noted that as expected the oscillatory shear factors in table 8.1 are identical to the steady 

shear factors in table 6.1. In order to establish the limitations of the second order fluid 

inertia perturbation theory, we shall simulate the oscillatory shear flow behaviour of 

Newtonian fluids and single element Maxwell fluids in the three CSR geometries. 

8.6 Flow simulation of a Newtonian fluid and a single element Maxwell fluid 

For a Newtonian fluid and a single element Maxwell fluid the complex viscosity of 

the fluid is given by rj'= rj^ and T J ' = T]^^/(\ +iZoj) respectively, where t/o is the 

Newtonian viscosity and A is the relaxation time. The complex viscosity of these theoretical 

model fluids is known and will be referred to as the exact viscosity data throughout this 

section. At a prescribed inner cylinder frequency of oscillation the velocity distribution for 

the theoretical model fluids can be determined from the numerical solution of equation 

(8.2.4). Using this velocity distribution in equation (8.2.9) the expression C^e""IXQ + !(o^ 

can be evaluated numerically. Hence on using this value in equation (8.3.9) the complex 

viscosity if^, when fluid inertia effects are ignored, can be determined where the values 

are given in table 8.1. This value of 77* can then be used in equation (8.3.16) to determine 
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the first order and second order fluid inertia corrections, both with and without end effects, 

where the / , and values are given in table 8.1. Since the exact complex viscosity of the 

theoretical model fluids is known we can establish the limitations of the second order fluid 

inertia perturbation theory. The numerical finite difference method used to solve equation 

(8 .2.4) for a known fluid at a prescribed frequency of oscillation is now described . 

8.6.1 Finite difference equations for the velocity function v(r ,z) 

For a known fluid at a prescribed frequency of oscillation the non-dimensional 

complex parameter (a r,)^ can be evaluated for a given concentric cylinder geometry. When 

the value of (crr,)^ is known equation (8.2.4) can be solved numerically, subject to the 

boundary conditions of equation (8.2.6), to determine the complex velocity function v(r ,z) . 

This equation is to be solved using a finite difference method with an irregular mesh, as 

described in section 6.4. The whole flow domain is separated into three sub-domains as 

shown in figure 6.4 and the physical domain (r,z) is transformed to a computational plane 

(x,_v) using equations (6.4.1) to (6.4.3). We let the complex velocity function v(r,z) be 

transformed to v^(x,_v) for s- 1,2.3. 

The velocity function ^X^^y) ^^^^ thery-plane is denoted at each meshpoint (/,y) 

by . It is noted that equations (6.3 .19) and (8.2.4) are of the same form where equation 

(6.3.19) has the operator L and equation (8.2.4) has the operator L + ( a r , ) ^ Therefore on 

modifying equation (6.4.13) to take account of the (ar,)^ operator term the finite difference 

equations for ^ are given by 

V = r ' T i k(0 V. + ̂ ( 0 ^ + c i j ) + dU) V (8.6.1) 
[ ^ , ( > . y ) - ( « ' - i ) ] l ' ' " 'J 

where / = 1 to /ŵ  - 1 and y = 1 to for 5 = 1 , 3 

/• = 1 to - 1 and y = 1 to - 1 for s-i 
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and the discrete functions a,( / ) , Z»,(/), c^(J)> ^ ,0) and e^(ij) are given in equation 

(6.4.14). 

From equation (8.2.6) the condition dvjdz = 0 is to be applied on the fi-ee surface 

boundaries AB and CD. As described in section 6.4.3 the velocity on these boundaries 

will satisfy the condition 

V , . = v , , (8.6.2) 

for /• = 1 to w , - l ( 5 = 1 , 3 ) 

' Modifying equation (6.4.17) to take account of the {ar^Y operator term gives the 

finite difference equations for v. , on the interface between sub-domains 1 and 2, as 

V, = r ' T V, V, + c ^ ( / > , + ^ „ . ( y ) v , (8.6.3) 
[ e ^ ( 7 ) - ( a r , ) ' ] l ^ ' ^ " '̂'̂ ^ ^ 

for 7 = 1 to - 1 , where the discrete fijnctions , , c^C/), ^«,(y) and „̂̂ C/) are 

given in equation (6.4.18). In order to match the finite difference equations across the 

interface between sub-domains 1 and 2 we let v, = v, for J - \ to //, - 1 when the 

values of v, have been obtained from equation (8.6.3). 
"I J 

On modifying equation (6.4.20) to take into account the (ar,)^ operator term we 

obtain finite difTerence equations for , on the interface between sub-domains 2 and 3, 

as 

! (/)v, +A„ (/)v, +c^v , V, (8,6.4) 

for / = l to W j - l . where the discrete functions a^( / ) , A„^(/), , and e^{i) are 

given in equation (6.4.21). The finite difference equations are matched across the interface 

between sub-domains 2 and 3 by letting Vj = ^ for / = 1 to /n^ - 1 when the values 
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of have been obtained from equation (8.6.4). 

The iterative procedure to solve the finite difference equations presented in this 

section is given in appendix 8.3. 

The numerically obtained velocity distribution for v(r,z) can be used in equation 

(8.2.9) to evaluate the expression Qe"'/XQ +Ico^ numerically. It is noted that the integral 

in equation (8.2.9) is evaluated from the finite difference velocity distribution using the 

method presented in section 6.4.7. 

8.6.2 Results for the oscillatory shear flow simulation 

It can be shown that the normalised complex viscosity (rj /no)^^ a Newtonian 

fluid, in a given concentric cylinder geometry, can be represented as a function of the non-

dimensional normalised frequency {= p r^^eo/rj^). In figures 8.1 and 8.2 we present end 

effect corrections and fluid inertia corrections for the simulated dynamic viscosity and 

dynamic rigidity data respectively of a Newtonian fluid in a wide gap geometry. The 

uncorrected data in these figures is obtained from the standard formula (equation (8.3.10) 

with / ( , = 1) in which end effects and fluid inertia effects are ignored. In figures 8.1 and 8.2 

we also present complex viscosity data corrected for end effects only, corrected for second 

order fluid inertia effects only and corrected for both end effects and second order fluid 

inertia effects. In these figures it should be noted that the uncorrected data and the data 

corrected for end effects differ by a scaling factor of = 0-908 for all frequencies of 

oscillation. Equation (8.3.16) shows that dynamic viscosity data is not influenced by first 

order fluid inertia effects. Therefore first order fluid inertia corrections with and without end 

effects are only presented for the dynamic rigidity data in figure 8.2. This figure shows an 

apparent negative dynamic rigidity when fluid inertia effects are ignored and an apparent 
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positive dynamic rigidity when fluid inertia effects are included in the theory. It is seen in 

figures 8.1 and 8.2 that when both end effects and second order fluid inertia effects are 

taken into account good agreement is obtained with the exact data up to a normalised 

frequency of 10. 

In figures 8.3 and 8.4 we present end effect corrections and fluid inertia effect 

corrections for the simulated dynamic viscosity and dynamic rigidity data respectively of a 

Newtonian fluid in a medium gap geometry. These figures include the uncorrected data, 

data corrected for end effects only, data corrected for second order fluid inertia effects only 

and data corrected for both end effects and second order fluid inertia effects. In figure 8.4 

we also present first order fluid inertia corrections with and without end effects. It is seen in 

figures 8.3 and 8.4 that data corrected for both end effects and second order fluid inertia 

effects gives good agreement v^th the exact complex viscosity data up to a normalised 

frequency of 15. 

The simulated dynamic viscosity data and dynamic rigidity data of a Newtonian fluid 

in a narrow gap geometry is presented in figures 8.5 and 8.6 respectively. In these figures it 

is seen that when both end effects and second order fluid inertia effects are taken into 

account good agreement with the exact data is obtained for normalised frequencies below 

50. 

For a single element Maxwell fluid in which rf = rjQ/(\ + iAo)), it can be shown 

that for a given concentric cylinder geometry the normalised complex viscosity (^ ' /Vo) 

be represented as a fijnction of the two non-dimensional quantities R (= pr^ I(A^y)) and 

the Deborah number De (= X(o). In figures 8.7 and 8.8 we present end effect corrections 

and second order fluid inertia corrections for simulated dynamic viscosity and dynamic 

rigidity data respectively of a single element Maxwell fluid in a wide gap geometry when 

R = 5. When both end effects and second order fluid inertia effects are taken into account it 
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is seen that good agreement is obtained with the exact data up to a Deborah number of 0-8. 

We now consider the Deborah number range of applicability of the complex 

viscosity corrections which include both end effects and second order fluid inertia effects for 

various values of R. The dynamic viscosity and dynamic rigidity corrections for a wide gap 

geometry are presented in figures 8.9 and 8.10 respectively. It can be seen in these figures 

that when R has a value below 15, good agreement is obtained with the exact data up to a 

Deborah number of 0-4. However if R has a value below 2 then good agreement with the 

exact data is obtained up to a Deborah number of 1-6. The dynamic viscosity and dynamic 

rigidity corrections are presented for both the medium gap geometry (figures 8.11 and 8.12 

respectively) and the narrow gap geometry (figures 8.13 and 8.14 respectively). In the case 

of the medium gap geometry, R values below 30 give good agreement with the exact data 

up to Deborah numbers of 0-4, whereas for R values below 4 good agreement with the 

exact data is obtained up to a Deborah number of 1-6. For the narrow gap geometry, R 

values below 180 give good agreement with the exact data up to Deborah numbers of 0-5, 

whereas for R values below 30 good agreement with the exact data is obtained up to a 

Deborah number of 1 -6. 

8.7 Conclusions 

It has been shown that the standard formulae for complex viscosity prediction on a 

C S R controlled stress rheometer can be modified to include both end effects and second 

order fluid inertia effects. These modified formulae are expressed in terms of geometry 

dependent factors and can be incorporated into the C S R software to correct the complex 

viscosity prediction for these effects. Numerically simulated oscillatory shear data has been 

generated for Newtonian fluids and single element Maxwell fluids on a C S R controlled 

stress rheometer. Results for Newtonian fluids show the validity of the modified complex 
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viscosity formulae up to normalised frequencies of 10, 15 and 50 for the wide, medium and 

narrow gap geometries respectively. For Deborah numbers below 1-6, oscillatory shear flow 

simulations of single element Maxwell fluids show the validity of the modified complex 

viscosity formulae for R values below 2, 4 and 30 for the wide, medium and narrow gap 

geometries respectively. 

Some of the work presented in this chapter is included in a paper which has been 

accepted for publication in the Journal of Non-Newtonian Fluid Mechanics. 
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C H A P T E R 9 

C O N C E N T R I C C Y L I N D E R END E F F E C T S AND F L U I D INERT IA 

E F F E C T S ON C O M P L E X VISCOSITY PREDICTIONS OBTAINED 

FROM A WEISSENBERG R H E O G O N I O M E T E R 

9.1 Introduction 

A concentric cylinder oscillatory shear theory for predicting the complex viscosity of 

a fluid on the controlled strain Weissenberg rheogoniometer, which included second order 

fluid inertia effects, was presented in chapter 4. This theory was based on infinite cylinder 

theory in which end effects are ignored. It is seen in chapter 8 that concentric cylinder end 

effects can be important in oscillatory shear flows on a C S R controlled stress rheometer. 

In this chapter we develop a concentric cylinder oscillatory shear theory for the 

Weissenberg rheogoniomeler which includes both end effects and second order fluid inertia 

effects. The analysis will follow a similar approach to the fluid inertia perturbation theory 

for the C S R rheometer in chapter 8 and modified formulae will be produced for predicting 

the complex viscosity. The equations obtained from the perturbation theory are solved using 

a finite difference method with an irregular mesh, as described in section 6.4. End effects 

and fluid inertia effects are considered for the three C S R concentric cylinder geometries 

previously described in this thesis. 

A numerical simulation of the oscillatory shear flow behaviour of a Newtonian fluid 

and a single element Maxwell fluid in a concentric cylinder geometry on the Weissenberg 

rheogoniometer will be performed. As in chapter 4 we shall consider the case where the 

inner cylinder is constrained by a torsion bar and the case where the inner cylinder is 

connected to a strain gauge torsion head. Using the simulated data, a comparison of 

complex viscosity predictions is made between the formulae which ignore end effects (see 
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chapter 4) and the formulae produced in this chapter which include end effects. The 

numerically simulated data will also be used to establish the frequency range of applicability 

of the modified second order fluid inertia correction formulae. A comparison will also be 

made, for a given concentric cylinder geometry, between the complex viscosity data 

obtained from the Weissenberg rheogoniometer fitted with a strain gauge torsion head and 

the corresponding data obtained from a CSR controlled stress rheometer. 

9.2 Oscillatory shear theory 

A generalised linear viscoelastic theory which takes into account end effects is 

developed for the concentric cylinder geometry on a Weissenberg rheogoniometer. In the 

oscillatory shear mode the outer cylinder is forced to perform small amplitude oscillations of 

amplitude 0^ and frequency/(cycles/sec) about the z-axis. The resulting motion of the fluid 

causes the inner cylinder, which is constrained by a torsion bar of stiffness /T, to perform 

oscillations about the z-axis of amplitude ^, with a phase lag c behind the motion of the 

outer cylinder. The amplitude 9^ and phase lag c are measured by the rheogoniometer and 

together with the applied amplitude 0^ and frequency/ can be used to predict the complex 

viscosity of a fluid. 

In the analysis we consider the outer cylinder to oscillate with amplitude at a 

prescribed frequency / and the inner cylinder to oscillate with amplitude 0^ at this 

frequency. It is assumed that the amplitude of oscillation of the driven outer cylinder is 

sufficiently small to ensure that the flow is in the linear viscoelastic region and hence non­

linear fluid inertia terms can be ignored in the equations of motion. Referring to a set of 

cylindrical polar coordinates (r,0,z) we may assume a velocity distribution for the 

axisymmetric flow of the form 

V, = 0 , v, = v(r,z)e'" , v^=0 (9.2.1) 
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where Q) = 2n f (radians/sec) is the angular frequency of oscillation and the real part of 

these quantities is implied. 

The velocity distribution of equation (9.2.1) gives two non-zero components of the shear 

stress tensor as 

r,n = 77 r -
dv 

where 77* is the complex viscosity of the fluid. 

On substituting equations (9.2.1) and (9.2.2) into the relevant stress equations of motion 

(Bird et al[\]) we have 

( L + a ' ) [ v ] = 0 (9.2.3) 

where the fluid inertia parameter a is defined in equation (4.2.4) and the operator L is 

defined in equation (8.2.5). 

With reference to figure 6.2 and using equation (9.2.1) we consider the boundary 

conditions for the complex velocity function v ( r .z ) . On the moving boundaries the no slip 

condition is imposed, hence v = riw0^e*'' on boundaries O E and D E and v = r , /w^, on 

boundary B C . As for the analysis of oscillatory shear flow on a C S R controlled stress 

rheometer, in chapter 8, we shall impose the condition that the *free surface' boundaries AB 

and C D remain in their horizontal positions. On these *free surface* boundaries we have 

= 0 and therefore from equation (9.2.2) we have the condition dvjdz = 0. On the line 

of symmetry boundary OA we have v = 0. In summary the boundary conditions for the 

function v(r .z) are given by 

V = 0 on boundary OA. 

dvfdz = 0 on free surface boundaries A B and CD. 

V = r, i(o 6^ on the moving boundary B C . 

V = ricoOj e'" on the moving boundaries D E and O E . 

(9.2.4) 

170 



In order to solve equation (9.2.3) numerically it is convenient to express the velocity 

function v( r , r ) as a linear superposition of two velocity fiinctions v^ir^z) and Vj.(r,z) in 

the form 

v(r,z) = v^{r,z) + v,(r,z) (9.2.5) 

In this equation we choose Vj^^(r,2) to be the velocity fijnction which satisfies the 

oscillatory shear flow situation where v^^ =rio)9^e"' on the outer cylinder and v^^^ = 0 on 

the inner cylinder. v^{r^z) is chosen to be the velocity function which satisfies the 

oscillatory shear flow situation where v,. = r, icoO^ on the inner cylinder and v̂ . = 0 on the 

outer cylinder. It can be shown that the expression for v ( r , r ) in equation (9.2.5) satisfies 

equation (9.2.3) subject to the boundary conditions in equation (9.2.4). 

Throughout the analysis the following non-dimensional variables will be used 

' • • = - . ^ ^ = - . ^ r = ^ . = . . v ; = - ^ (9.2.6) 

Substituting equation (9.2.5) into equation (9.2.3) and using equation (9.2.6) gives the two 

equations 

( l + (ar,)^)[v,,] = 0 (9.2.7) 

(Z + (ar,)^)[v,] = 0 (9.2.8) 

where the non-dimensional' notation is implied but has been omitted for convenience. 

The non-dimensional function v^^{r,z) in equation (9.2.7) is subject to the boundary 

conditions 

Vĵ^ = 0 on boundaries OA and B C . 

dv^Jdz = 0 on free surface boundaries A B and C D . 

Vĵ^ = r on the moving boundaries O E and D E . 

(9.2.9) 

For the non-dimensional fijnction v^{r,z) in equation (9.2.9) the boundary conditions are 

given by 
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Vj. = 0 on boundaries OA, O E and D E . 

dv^jdz = 0 on free surface boundaries A B and C D . 

Vy. = 1 on the moving boundary B C . 

(9.2.10) 

It should be noted that the boundary conditions for the non-dimensional velocity functions 

Vj^(r,z) and Vj{r,z) are independent of the amplitude ratios ^ , , 6^ and the phase lag c. 

The equation of motion of the inner cylinder can be written as 

=( /C-to ' )6 ' ,e"^ (9.2.11) 

where is the torque exerted on the inner cylinder due to the motion of the fluid and / is 

the moment of inertia of the member constrained by the torsion bar. 

The torque exerted on the inner cylinder due to the motion of the inner cylinder is given 

by equation (6.2.7) with a sign change. Using equations (9.2.2), (9.2.5) and (9.2.6) the 

torque Cp, for a generalised linear viscoelastic fluid, can be expressed as 

On substituting equation (9.2.12) into equation (9.2.11) we have 

e'" 1 

• 

V 

V 

dz 

• 

V 

V 
'I 

\ dr r ) { r ) 
'I 

(9.2.12) 

where .9 (=̂1/̂2) is the amplitude ratio and 

/ dv_ V 

(9.2.13) 

7| 

dz m = MJ (9.2.14) 
V dr r 

are non-dimensional constants which are dependent on the geometry dimensions and the 

fluid inertia parameter a . 

In principle the complex viscosity i] of a fluid can be obtained from the solution to the 

coupled equations (9.2.7), (9.2.8) and (9.2.13) subject to the boundary conditions in 

equations (9.2.9) and (9.2.10). However a solution to these equations can only be obtained 
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using a suitable numerical iterative technique. This is not a simple task and therefore we 

shall solve these equations using a perturbation analysis which will be valid when fluid 

inertia effects are small. 

9.3 Fluid inertia perturbation theory for a generalised linear viscoelastic fluid 

The perturbation analysis will follow a similar procedure to the perturbation analysis 

in section 8.3 for concentric cylinder oscillatory shear flow on a C S R controlled stress 

rheometer. We consider a second order power series expansion of the functions Vj^(r,z) 

and Vy.(r,z) in terms of the non-dimensional parameter (ar , )^ as 

v„(r ,^) = v^ ( r , z ) + (ar,)^v„,( / - ,z) + ( a r , ) ^ „ , ( / - , z ) m^MJ ( 9 . 3 . 1 ) 

Substituting the expansion of equation ( 9 . 3 . 1 ) into equations ( 9 . 2 . 7 ) and ( 9 . 2 . 8 ) and 

comparing coefficients of the non-dimensional {ar^Y terms gives 

Zero order. L[V̂O] = 0 /w = A / , r ( 9 . 3 . 2 ) 

First order. 4 ^ „ , ] = -^„o m^MJ ( 9 . 3 . 3 ) 

Second order. ^ ^m2 - ~^m\ m=M,T ( 9 . 3 . 4 ) 

On considering equations ( 9 . 2 . 9 ) and ( 9 . 2 . 1 0 ) and the series expansion in equation ( 9 . 3 . 1 ) , 

the boundary conditions for the non-dimensional fijnctions V̂O(''>̂).̂WI('*»̂)'̂M2(''>̂)» 

^To(^y^)y^T\(^^^) ^Tzi^y^) Can bc determined. For v^^(,(r,z) we have 

M̂o ~ ^ on boundaries OA and B C . 

dv^^ldz = 0 on free surface boundaries A B and C D . 

Â/o ~ on the moving boundaries O E and D E . 

The boundary conditions for Vy.o(r,z) are given by 

Vy.Q = 0 on boundaries OA. O E and D E . 

dv^^jdz^ 0 on free surface boundaries AB and C D . 

Vj-o = 1 on the moving boundary B C . 
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For Vj^,(r ,2), Vj^2(r,z), Vj.,(r,2) and Vj.^(r,z) we have the conditions 

0 on boundaries OA, O E , D E and B C 

^^mi/^^ = ^^mi/^^ = 0 on free surface boundaries A B and C D . } 
(9.3.7) 

where m- M,T 

The values of the boundary conditions for the velocity functions v^o(''>^)» ^mi(''»^) 

^miir^^) fof" ^re all real quantities. It then follows that the solutions to equations 

(9.3.2) to (9.3.4) will also be real quantities. These equations are to be solved using a finite 

difference method with an irregular mesh, which will be described in section 9.4. 

On substitution of the series expansions for VJ^^(r,z) and Vjir^z), from equation 

(9.3.1), into equation (9.2.12) the torque Cp exerted on the inner cylinder due to the 

motion of the fluid can be expressed as 

+̂ 2̂ "KO+(«'-,)'/?MI+(«''I)VM2]} (9.3.8) 

where dz ni=T0J\,T2,M0,M\,M2 (9.3.9) 

are non-dimensional geometry dependent constants. 

We define 77J to be the complex viscosity of the fluid when fluid inertia effects are ignored. 

The torque Cp exerted on the inner cylinder due to the motion of the fluid when fluid 

inertia effects are ignored can then be obtained from equation (9.3.8) by setting a = 0 and 

replacing 7* by 7]l to give 

Cp = -27ti6>r.'fjl {0, /?ro + 0,e^'fi^,o } 

Using equations (9.2.11) and (9.3.10) we have 

(9.3.10) 

3 p 
MO 

2;rr, 0)7]^ 
(9.3.11) 
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Following a similar analysis to that presented in section 7.4 it can be shown that 

/̂ T-o = ~PMO convenient to express equation (9.3.11) in the form 

iS 
Vo=fo (9.3.12) 

where S is the geometrical parameter defined in equation (4.3.15) and 

/^(r-lhr^ l[pf^^r^{rl -r^)] is a geometry dependent end effect correction factor in 

which h is the height of the inner cylinder. It should be noted that in this form the factor / , 

has a value of 1 when end effects are ignored. In this case equation (9.3.12) reduces to the 

formula given in equation (4.2.17) for determining the complex viscosity rf^ of a fluid. 

We define the complex parameter a\ as 

2 „ -io)P 
oc. (9.3.13) 

On using equations (9.3.8), (9.3.10) and (9.3.13) we obtain a relationship between TJI and 

77* given by 

+ 2 

(9.3.14) 

In order to determine an expression for rf in terms of 7o, from this equation, we expand 

rf as a second order power series in the non-dimensional parameter {a^r^y given by 

On substituting equation (9.3.15) into equation (9.3.14) we obtain 

(9.3.15) 
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PT^Vl+PToV\Y^[p^,l>P^ori\\t{aor,y ( 9 . 3 . 1 6 ) 

where terms of order (oo^i)* higher have been neglected. 

Comparing coefficients of the (ttol)^ terms in equation (9.3.16) and using equation 

(9.3.11) and the result that = -P^^i we have 

^ 1 = 

MO 

(9.3.17) 

"'''''^^'^HP..-Pr.)-^„ A/2 
MO 

(9.3.18) 

Substituting these expressions for TJ' and rj] into equation (9.3.15) gives 

17] 
(9.3.19) 

where / j , , / , and / , are non-dimensional geometry dependent factors given by 

PML 

PM2 

P^O 

A 

(9.3.20) 

On using equation (9.3.13) we can express the correction for second order fluid inertia 

effects as 

7] ^n^+icopr^ (9.3.21) 

Using the numerical solution to equations (9.3.2) to (9.3.4), the non-dimensional geometry 

dependent constants / ? ^ , /?„, and P^^ for m-M,T can be determined from equation 
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(9.3.9). The geometry dependent factors /p, / , , f^, and required in equations 

(9.3.12) and (9.3.21) can then be calculated. A finite difference method for the solution of 

equations (9.3.2) to (9.3.4) will be presented in section 9.4. 

Equation (9.3 .21) is the modified formula for calculating the complex viscosity of a 

fluid which corrects for both end effects and second order fluid inertia effects. This equation 

takes a similar form to the second order fluid inertia correction, given in equation (4.3.27), 

where end effects were ignored. The / , » / j , / , and / , factors in equation (9.3.21) are 

known for the case when end effects are ignored from equations (4.3.26) and (4.3.27). It is 

noted that r]\ in equation (9.3.26) is known from equation (9.3.17). In order to establish 

the limitations of the second order fluid inertia perturbation theory, we shall simulate the 

oscillatory shear flow behaviour of a Newtonian fluid and a single element Maxwell fluid in 

the medium gap CSR geometry on a Weissenberg rheogoniometer. From the simulation we 

can generate complex viscosity data which is equivalent to the data obtained from the 

rheogoniometer software when end effects and fluid inertia effects are ignored. The 

simulated data will be used to establish how the complex viscosity prediction of a fluid in a 

concentric cylinder geometry is influenced by end effects and fluid inertia effects. 

9.3.1 Complex viscosity prediction for a strain gauge torsion head system on the 

Weissenberg rheogoniometer 

On a Weissenberg rheogoniometer. instead of constraining the inner cylinder with a 

torsion bar it is possible to connect the inner cylinder to a strain gauge torsion head. As 

discussed in chapter 4 we can assume that when a strain gauge is used the inner cylinder will 

remain stationary. Therefore we consider the strain gauge to be infinitely stiff and a 

relationship 7]^ and for this type of oscillatory shear flow is then obtained by combining 

equations (9.2.13) and (9.3.11) and setting K-OQXO give 
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= f J - ^ ^ P . n (9-3.22) 

where is the geometry dependent end effect correction factor defined in equation 

(9.3.12). 

It is noted that if = oo then it follows that the geometrical parameter S defined in 

equation (4.3.15) is also infinite. On setting 5 = oo in equation (9.3.19) we obtain the 

second order fluid inertia correction for complex viscosity data obtained using a strain 

gauge torsion head as 

7" = («o'-.)' -Mcc,r,y\ (9-3.23) 

where / , and are defined in equation (9.3.20) 

9.4 Finite difference method of solution for the perturbation theory equations 

Equations (9.3.2) to (9.3.4), obtained fi-om the fluid inertia perturbation theory, are 

to be solved using a finite difference method with a finer mesh near the recessed end (comer 

B) . Therefore, as described in section 6.4, the whole flow domain is separated into three 

sub-domains as shown in figure 6.4 and the physical domain {r^z) is transformed to a 

computational plane {x,y) using equations (6.4.1) to (6.4.3). We let the non-dimensional 

functions v^oir^z), v^ , ( r ,z ) and ^..^(r^z) be transformed to v^^,/x,; /) , v^,^{x,y) and 

^M2,i^*y) respectively for j = 1,2.3. The non-dimensional fijnctions v^^{r,z), V j . , ( r . z ) 

and v^2(r,z) are transformed to ^roX^^y)^ ^n i ( ^ .> ' ) ^r2,(^.3') respectively for 

5=1,2.3. The finite difference method of solution for each of the transformed velocity 

fijnctions is now described. 
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9.4.1 Finite difference equations for the velocity functions v^(,(r,2) and Vroi''^z) 

The velocity functions v^^^^(x,y) and Vj.Q^(x,y) over the ry-plane are denoted at 

each meshpoint ( i j ) by v^^^^ _^ and v̂ -o, ^ . respectively. It is noted that equation (9.3.2) 

is of the same form as equation (6.3.19), but the boundary conditions are now given by 

equations (9.3.5) and (9.3.6). Therefore on making the substitutions ^Q,-^M<is ^"^ 

^0, = ^ro, the equations presented in section 6.4.3 (equations (6.4.13), (6.4.17) and 

(6.4.20)) we obtain the respective finite difference equations for v^^^ _ and v^^^ ^ . . As 

before the velocities v^^^ and Vj.̂ ^ on the 'free surface' boundaries' will satisfy the 

condition in equation (6.4.15). Equations (6.4.19) and (6.4.22) are used to match the finite 

difference equations across the interfaces between sub-domains. The iterative procedure 

presented in appendix 6.1 can be followed to solve the finite difference equations for 

^ . 0 , , , and v,,,^ . . 

9.4.2 Finite difference equations for the velocity functions v^ , ( r , z ) and v^| ( r ,z) 

The velocity functions ^Mx,{x,y) and ^rui^^y) o^er the xy-plane are denoted at 

each meshpoint (/,y) by v̂^̂,̂  and v,.,̂  respectively. It is noted that equation (9.3.3) is 

of the same form as equation (8.3.3) and the velocity boundary conditions are also the 

same. Therefore on making the substitutions v̂ ^ = v^^^ and v,̂  = Vj^,^ in the equations 

presented in section 8.4.2 (equations (8.4.1) to (8.4.4)) we obtain the finite difference 

equations for v̂ ,̂̂  . Making the substitutions v̂ ^ = v^^^ and v,̂  = Vj.,^ in equations (8.4.1) 

to (8.4.4) gives the finite difference equations for Vj.,^ . The iterative procedure presented 

in appendix 8.1 can be followed to solve the finite difference equations for v^^^ and 
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Vj.,^ discussed in this section. 

9.4.3 Finite difference equations for the velocity functions v^ii^^^) ^Tii^'jZ) 

The velocity functions Vj^^2,(^»^) ^r2,(^»y) "̂̂ ^̂  ry-plane are denoted at 

each meshpoint (J J ) by v^^^ and v̂ ,̂ respectively. It is noted that equation (9.3.4) is 

of the same form as equation (8.3 .4) with the same velocity boundary conditions. Therefore 

the finite difference equations for v^^^^ are obtained by making the substitutions 

v,̂  = Vj^^,^ and v̂ ^ = v^^^^ in the equations presented in section 8.4.3 (equations (8.4.5) to 

(8.4.8)). Substituting v,̂  = v̂ .,̂  and v̂^ = ^r:, into the equations presented in section 8.4.3 

(equations (8.4.5) to (8.4.8)) gives the finite difference equations for Vj^^^ . The iterative 

procedure presented in appendix 8.2 can be followed to solve the finite difference equations 

for V . , , and v^, discussed in this section. 
A f Z j .J T2s ^J 

9.4.4 Calculation of the geometry dependent constants from the fmite difTerence 

solutions for the perturbation theory equations 

In equation (9.3.8) the torque exerted on the inner cylinder due to the motion of 

the fluid is expressed in terms of the non-dimensional constants fij^Q, , fij^^» PTO » fin 

and y9j.2 • T^hese constants can be determined from the finite difference solutions for the 

velocity distributions v^,j,(r.z). v^„(r.z). v^2(r,z), ^^.^(r.z), Vr,(r,z) and Vr2(r,z) using 

equations (6.4.62) and (6.4.63) for m = MO,M\,M2JO,T\J2 and the method described in 

section 6.4.7. 

9.5 Results for the fluid inertia perturbation theory 

Oscillatory shear end effects and fluid inertia effects are considered for the same 
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three C S R geometries as for steady shear flow on a C S R controlled stress rheometer. 

Therefore the finite difference equations given in section 9.4 are solved using 160x160 

meshes as described in section 6.4.8. 

Using the numerical solution to equations (9.3.2) to (9.3.4) for the three C S R 

geometries, the non-dimensional geometry dependent constants ŷ ĵ ô. PM\^ PMI^ PTO^ 

Pjy and Pj^ are determined. The geometry dependent factors /(,, / , , / j , / , required 

in equations (9.3.17) and (9.3.26) are therefore known and presented in table 9.1(a). 

With End Effects 

/o f^ fr 

Narrow Gap 0-973 2-429x10-' 6-627 X10*' 4-156 xlO"*' 8-314 xlO-* 

Medium Gap 0-927 2-248 xlO'^ 5-364 x10'^ 3-739 x10"* 6-812 xlO^ 

Wide Gap 0-908 6-378 xlO-^ 1-355 x10* 3 091 xlO'^ 5-179x10'^ 

Table 9.1(a):- Oscillatory shear factors with end effects. 

Without End Effects 

/o h h 

Narrow Gap 1 2-464 xlO-' 6-616 x 10-' 4-248 xlO"^ 8-336 x10"* 

Medium Gap 1 2-437 xlO-^ 5-452 x10-^ 4-150x10^ 7068 x10^ 

Wide Gap 1 7.170x10-^ 1-398 x10* 3-587 x10-^ 5-507 X10"' 

Table 9.1(b):- Oscillatory shear factors without end effects. 

For comparison we present the geometry dependent factors when end effects are ignored in 

table 9.1(b). The factors in this table have been evaluated using equations (4.3.26) and 

(4.3.27). It should be noted that the oscillatory shear factors in table 9.1(a) are identical 

to both the steady shear f ^ factors presented in tables 6.1 and 7.1 and the oscillatory shear 
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/o factors for the CSR controlled stress rheometer presented in table 8.1. In order to 

establish the limitations of the second order fluid inertia perturbation theory, we simulate 

the oscillatory shear flow behaviour of a Newtonian fluid and a single element Maxwell fluid 

in the medium gap CSR geometry. The simulation is considered for the case where the inner 

cylinder is constrained by a torsion bar of finite stiffness K and the case where the inner 

cylinder is connected to a strain gauge torsion head, which we consider to have infinite 

stiffness. 

9.6 Flow simulation of a Newtonian fluid and a single element Maxwell fluid 

For a Newtonian fluid and a single element Maxwell fluid the complex viscosity is 

given by T f = 7 ] ^ and TJ* = rfQ/(\-^i2.0)) respectively, where rj^ is the Newtonian 

viscosity and A is the relaxation time. The complex viscosity of these theoretical model 

fluids is known and will be referred to as the exact viscosity data throughout this section. At 

a prescribed outer cylinder frequency of oscillation / t he velocity distribution Vj^^(r,z), for 

the theoretical model fluids, can be determined from the numerical solution of equation 

(9.2.7) subject to the boundary equations in equation (9.2.9). Similarly equation (9.2.8) can 

be solved numerically, subject to the boundary conditions in equation (9.2.10), for the 

frequency/to give the velocity distribution Vj.(r,z) for the theoretical model fluids. Using 

these velocity distributions in equation (9.2.13) the expression e'^/S can be evaluated 

numerically. Hence on using this value in equation (9.3.12) the complex viscosity TJI, when 

fluid inertia effects are ignored, can be determined where the values are given in tables 

9.1(a) and 9.1(b). This value of 7]l can then be used in equation (9.3.21) to determine the 

first order and second order fluid inertia corrections, both with and without end effects, 

where the / , , / j , and / , values are given in tables 9.1(a) and 9.1(b). Since the exact 
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complex viscosity data of the theoretical model fluids is known, the limitations o f the 

second order fluid inertia perturbation theory can be established. 

Simulations will also be performed for the case where the inner cylinder is 

constrained by a strain gauge torsion head. The complex viscosity data obtained from these 

simulations will be compared with the corresponding data obtained fi-om a CSR controlled 

stress rheometer. 

The numerical finite difference method used to solve equations (9.2.7) and (9.2.8) 

for a known fluid at a prescribed frequency o f oscillation is now described. 

9.6.1 Finite difTerence equations for the velocity functions v,^(r,z) and v^(r,z) 

For a known fluid at a prescribed frequency of oscillation the non-dimensional 

complex parameter (ar^y can be evaluated for a given concentric cylinder geometry. 

When the value of (ar, y is known equations (9.2.7) and (9.2.8) can be solved numerically, 

subject to the boundary conditions of equations (9.2.9) and (9.2.10) respectively, to 

determine the complex velocity functions Vj^(r,2) and v^{r,z). Equations (9.2.7) and 

(9.2.8) are to be solved using a finite difference method with an irregular mesh, as described 

in section 6.4. Therefore the whole flow domain is separated into three sub-domains, as 

shown in figure 6.4, and the physical domain (r,2) is transformed to a computational plane 

(x , ^ ) using equations (6.4.1) to (6.4.3). We let the complex velocity functions v^ ( r ,z ) 

and Vy.(r,2) be transformed to ^ A / , ( ^ » > ' ) ^ " ^ ^T,(^^y) respectively for 5=1,2.3. 

The velocity functions VA,,ix,y) and Vj.^(x,y) over the xy-plane are denoted at 

each meshpoint (/,_/) by v,^^ and v^.^ respectively. It is noted that both equations 

(9.2.7) and (9.2.8) are of the same form as equation (8.2.4), where the velocity boundary 

conditions are now given by equations (9.2.9) and (9.2.10). Therefore on making the 
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substitutions = v^^ and v^=Vj.^ in the equations presented in section 8.6.1 (equations 

(8.6.1) to (8.6.4)) we obtain the respective finite difference equations for v^^ and v̂ .̂  . 

The iterative procedure presented in appendix 8.3 can be followed to solve the finite 

difference equations for Vj^^^ and Vj.^ discussed in this section. 

In equation (9.2.13) the motion of the inner cylinder is expressed in terms o f the 

non-dimensional constants y?̂ y and fij-. These constants can be determined from the finite 

difference solutions for Vj^(r,z) and v^(/-,2) using equations (6.4.62) and (6.4.63) for 

m - MJ and the method described in section 6.4.7. 

9.6.2 Results for the oscillatory shear flow simulations with a torsion bar system 

The numerical simulations are performed for a medium gap CSR geometry, where 

the inner cyHnder is constrained by a torsion bar of stiffness A'= 5 005 Nm/rad and the 

member constrained by the torsion bar has moment of inertia / = 164 / iNs^. For these 

values of K and / the member constrained by the torsion bar will have a natural frequency of 

0)^ = 174.695rad/s. 

For a given concentric cylinder geometry and torsion bar (i.e. r,. r^.I^K known), it 

can be shown that the normalised complex viscosity (^ ' / ' /o ) of a Newtonian fluid can be 

represented as a function o f the two non-dimensional quantities R{= pf,^ct}o/j7o) and the 

normalised fi-equency ( W / C J Q ) . A s for the numerical simulations presented in section 5.3, 

where end effects were ignored, we consider the oscillatory shear f low behaviour o f 

Newtonian fluids over the frequency range 0<€o < 2Q)Q . In figures 9.1 and 9.2 we present 

end effect corrections and fluid inertia corrections for the simulated dynamic viscosity and 

dynamic rigidity data respectively of a Newtonian fluid in a medium gap geometry when 

7̂  = 10. The uncorrected data in these figures is obtained from the standard formula 
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(equation (9.3.12) with = I ) in which end effects and fluid inertia effects are ignored. In 

figures 9.1 and 9.2 we also present complex viscosity data corrected for end effects only, 

corrected for second order fluid inertia effects only and corrected for both end effects and 

second order fluid inertia effects. In these figures it should be noted that the uncorrected 

data and the data corrected for end effects differ by a scaling factor of = 0-927 for all 

frequencies of oscillation. Figure 9.2 shows an apparent positive dynamic rigidity when fluid 

inertia effects are ignored and an apparent negative dynamic rigidity when second order 

fluid inertia effects are included in the theory. It is seen in figure 9.1 that when both end 

effects and second order fluid inertia effects are taken into account good agreement is 

obtained with the exact dynamic viscosity data over the full normalised frequency range 

considered. However in figure 9.2 it is seen that when both end effects and second order 

fluid inertia effects are taken into account good agreement with the exact dynamic rigidity 

data is only obtained up to a normalised frequency of 0-8. 

For a given concentric cylinder geometry and torsion bar (i.e. r,, r^, I, K known), 

the normalised complex viscosity {TJ'/T]^^) o^a single element Maxwell fluid, with a specific 

relaxation time Z, can be written as a fijnction of the two non-dimensional quantities 

Ri- pr^co^lr]^) and the normalised frequency {(o/co^). The oscillatory shear flow 

behaviour of single element Maxwell fluids is simulated over the frequency range 

0<a}< ICOQ and the relaxation time A is chosen such that ZCOQ - 1. Figures 9.3 and 9.4 

show end effect corrections and fluid inertia effect corrections for the simulated dynamic 

viscosity and dynamic rigidity data respectively of a single element Maxwell fluid in the 

medium gap geometry when R = S. These figures include uncorrected data, data corrected 

for end effects only, data corrected for second order fluid inertia effects only and data 

corrected for both end effects and second order fluid inertia effects. It is seen in figure 9.3 

that dynamic viscosity data corrected for both end effects and second order fluid inertia 
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effects gives good agreement with the exact data for Deborah numbers below 0-8. However 

the corresponding dynamic rigidity data, presented in figure 9.4, corrected for both end 

effects and second order fluid inertia effects gives good agreement with the exact data up to 

a higher Deborah number of 1*2. 

9.6.3 Results for the oscillatory shear flow simulations with a strain gauge torsion 

head system 

The numerical simulations are performed for a medium gap CSR geometry where 

the inner cylinder is connected to a strain gauge torsion head and is therefore assumed to 

remain stationary. As before we consider the oscillatory shear flow behaviour of Newtonian 

fluids and single element Maxwell fluids. On using the non-dimensional constant in 

equation (9.3.22) the complex viscosity //J, when fluid inertia effects are ignored, can be 

determined where the values are given in tables 9.1(a) and 9.1(b). This value of rf^ can 

then be used in equation (9.3.23) to determine the first and second order fluid inertia 

corrections, both with and without end effects, where the / , and values are given in 

tables 9.1(a) and 9.1(b). For comparison purposes, the concentric cylinder oscillatory shear 

flow behaviour o f Newtonian fluids and single element Maxwell fluids is also simulated for a 

CSR controlled stress rheometer. This simulation is carried out as described in section 8.6. 

For a Newtonian fluid in a given concentric cylinder geometry it can be shown that, 

on both the Weissenberg rheogoniometer fitted with a strain gauge and the CSR controlled 

stress rheometer, the normalised complex viscosity ( T J ' / T J Q ) can be represented as a 

function of the non-dimensional normalised frequency ( = p O)/TJQ ). In figures 9.5 and 9.6 

we present end effect and fluid inertia corrections for the simulated dynamic viscosity and 

dynamic rigidity data of a Newtonian fluid in the medium gap geometry. These figures 

include uncorrected data, data corrected for end effects and data corrected for both end 
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effects and second order fluid inertia effects obtained firom both the Weissenberg and CSR 

instruments. It is noted that for both instruments in figures 9.5 and 9.6, the uncorrected data 

and the data corrected for end effects differ by a scaling factor of =0- 927 for all 

frequencies of oscillation. It is seen in figure 9.5 that, for both instruments, the dynamic 

viscosity data corrected for both end effects and second order fluid inertia effects gives 

good agreement with the exact data for normalised fi-equencies below 20. However the 

dynamic rigidity data in figure 9.6 shows that the CSR correction for end effects and second 

order fluid inertia effects gives good agreement with the exact data up to a normalised 

frequency of 40, whereas the corresponding data for the Weissenberg instrument is only in 

agreement for normalised frequencies below 10. 

For a single element Maxwell fluid in a given concentric cylinder geometry it can be 

shown that, on both the Weissenberg rheogoniometer fitted with a strain gauge and the 

CSR controlled stress rheometer, the normalised complex viscosity ( T / ' / ' / O ) 

represented as a function of the two non dimensional quantities R(= pr^^/i^Tj^)) and the 

Deborah number De{=Xa)). Figures 9.7 and 9.8 show end effect and fluid inertia 

corrections for the simulated dynamic viscosity and dynamic rigidity data respectively of a 

single element Maxwell fluid when /? = 10. In these figures we present uncorrected data, 

data corrected for end effects and data corrected for both end effects and second order fluid 

inertia effects from both the Weissenberg and CSR instruments. It is seen in figures 5.7 and 

5.8 that when correcting for end effects and second order fluid inertia effects, both 

instruments give good agreement with the exact complex viscosity data up to a normalised 

frequency of 0-8. 

9.7 Conclusions 

Using a perturbation analysis we have produced an analytical formula which can be 
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used to correct Weissenberg rheogoniometer complex viscosity data for concentric cylinder 

end effects and second order fluid inertia effects. This formula is expressed in terms of 

geometry dependent factors and can be incorporated into the Weissenberg rheogoniometer 

software to correct complex viscosity predictions for these effects. Simulated oscillatory 

shear data on a Weissenberg rheogoniometer has shown that correcting for end effects and 

second order fluid inertia effects gives more accurate complex viscosity predictions. As in 

chapter 5, the inclusion of second order fluid inertia effects gives a significant improvement 

in the complex viscosity prediction at frequencies of oscillation near the natural frequency of 

the inner cylinder constrained by the torsion bar. 
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APPENDICES 

Appendix 4.1 

The properties of Bessel functions used to determine equation (4.3.14) are given by 

J^^M = -J,.,{x)+'^J^(x) (A4.3.1) 

- ( x ) - ' J , ( x ) = £ [ x - ' y , ( x ) ] (A4.3.2) 

J,ix)Y;{x)-j\ix)Y,{x) = ^ (A4.3.3) 
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Appendix 6.1 Iterative procedure used to solve the finite difference equations for 

v^o(r,z) presented in section 6.4.3 

The steps for solving the finite difference equations presented in section 6.4.3 are as 

follows. 

1. Set initial values for v̂ ^ at all internal meshpoints, boundary meshpoints and the 

^fictitious meshpoints' above the free surface boundaries. 

2. Calculate the discrete functions given in equations (6.4.14), (6.4.18) and (6.4.21) at all 

relevant meshpoints. 

3. Apply equation (6.4.13) in sub-domain 1 ( 5 = 1) for / = 1 to w , - 1 and j= \ to . 

Use equation (6.4.15) (for s - \ ) to update the values at the 'fictitious meshpoints' 

(y = «, + 1) for / = 1 to m^-\. 

4. Apply equation (6.4.17) for j = \ to //, - 1 at meshpoints on the interface between sub-

domains 1 and 2. Let v^^ = v^j for 7 = 1 to «, - 1 in order to match the finite 

difference equations across the interface between sub-domains I and 2. 

5. Apply equation (6.4.13) in sub-domain 2 ( 5 = 2 ) for > = 1 to nt^- \ and J= \ to / / ^ - l . 

6. Apply equation (6.4.20) for / = 1 to - 1 at meshpoints on the interface between sub-

domains 2 and 3. Let =v for / = 1 to /m^ - 1 in order to match the finite 
p.O i . r t j 

difference equations across the interface between sub-domains 2 and 3. 

7. Apply equation (6.4.13) in sub-domain 3 (^ = 3) for / = i to m^~\ and 7 = 1 to / / j . 

Use equation (6.4.15) (for 5 = 3) to update the values at the 'fictitious meshpoints' 

(y = "3 + I ) for / = I to /W3 - 1 . 

8. I f convergence is achieved go to step 9 i f not return to step 3 to start another iteration of 

the SOR method. 

9. Store the discrete velocities v̂ ,̂  at every meshpoint in each sub-domain as an array. 
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Appendix 6.2 Iterative procedure used to solve the finite difference equations for 

^ ( r ,z ) and f$(r,z) presented in section 6.4.4 

The steps for solving the finite difference equations presented in section 6.4.4 are as 

follows. 

1. Set initial values for (p, and .. at all internal meshpoints and boundary meshpoints. 

2. Calculate the discrete functions given in equations (6,4.28), (6.4.31) and (6.4.34) at all 

relevant meshpoints. 

3. Using the previously determined finite difference solution v̂ ,̂  to calculate the discrete 

function / , ( ' , » given in equations (6.4.25), (6.4.31) and (6.4.34) at all relevant 

meshpoints. 

4. Apply equation (6.4.26) in sub-domain 1 ( 5 = 1) for / = 1 to w, - 1 and j = \ to / i , - 1 . 

5. Apply equation (6.4.29) for j = \ to «, - 1 at meshpoints on the interface between sub-

domains I and 2. Let 6-, = ix for /* = I to «, - 1 in order to match the firute 

difference equations across the interface between sub-domains 1 and 2. 

6. Apply equation (6.4.26) in sub-domain 2 ( j = 2 ) f o r / = 1 to nt^-X and y = l to n^-\. 

7. Apply equation (6.4.32) for / = 1 io ni^-X at meshpoints on the interface between sub-

domains 2 and 3. Let 6^ for / = I to / n , - 1 in order to match the finite 

difference equations across the interface between sub-domains 2 and 3. 

8. Apply equation (6.4.26) in sub-domain 3 ( 5 = 3 ) for / = 1 io m^-\ and _/' = 1 to - 1 . 

9. Apply equation (6.4.27) in sub-domain I (^ = 1) for / = 1 to /w, - 1 and ^ = 1 to t \ - \ . 

10. Apply equation (6.4.30) for _/= 1 to / i , - 1 at meshpoints on the interface between 

sub-domains I and 2. Let -w, for / = ! to « , - 1 in order to match the 

finite difference equations across the interface between sub-domains 1 and 2. 

11. Apply equation (6.4.27) in sub-domain 2 ( 5 = 2 ) for i-\Xom^-\ and 

7 = 1 to / i j - 1 . 

12. Apply equation (6.4.33) for / = 1 to - 1 at meshpoints on the interface between 

sub-domains 2 and 3. Let = for ' = 1 to - 1 in order to match the 

finite difference equations across the interface between sub-domains 2 and 3. 
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13. Apply equation (6.4.27) in sub-domain 3 (^ = 3) for i = l to m^~\ and 

7 = 1 to « 3 - 1 . 

14. I f convergence is achieved go to step 16 i f not proceed to step 15. 

15. Update the boundary conditions for using equations (6.4.36), (6.4.38), (6.4.39) 
'J 

and (6.4.41) and then return to step 3 to start another iteration of the SOR method. 

16. Store the discrete streamfiinction values y^, . . at every meshpoint in each sub-domain 

as an array. 
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Appendix 6.3 Iterative procedure used to solve the finite difTerence equations for 

v^j(r,z) presented in section 6,4.6 

The steps for solving the finite difference equations presented in section 6.4.6 are as 

follows. 

1. Set initial values at all internal meshpoints, boundary meshpoints and 'fictitious 

meshpoinis' above the free surface boundaries. 

2. Calculate the discrete functions given in equations (6.4.14), (6.4.18) and (6.4.21) at all 

relevant meshpoints. 

3. Calculate the discrete functions / , ( ' . y ) given in equations (6.4.54), (6.4.55), (6,4,58) 

and (6.4.60) at all relevant meshpoints. 

4. Apply equation (6.4.56) in sub-domain 1 ( 5 = 1 ) for / = 1 to - 1 and J= \ to «,. 

Use equation (6.4.57) (for J = 1) to update the values at the fictitious points (_/' = //, + 1) 

for / = 1 to m^-\. 

5. Apply equation (6.4.59) for j = \ to //, - 1 at meshpoints on the interface between sub-

domains 1 and 2. Let ^ = v ,̂ for 7 = 1 to - 1 in order to match the finite 

difference equations across the interface between sub-domains 1 and 2. 

6. Apply equation (6.4.56) in sub-domain 2 (5 = 2 ) for / = I to - 1 and j = \ io n^-\. 

7. Apply equation (6.4.61) for / = 1 io rn^-X at meshpoints on the interface between sub-

domains 2 and 3. Let v., = v„ for / = 1 to /w, - 1 in order to match the finite 

difference equations across the interface between sub-domains 2 and 3. 

8. Apply equation (6.4.56) in sub-domain 3 ( j = 3) for / = 1 to m^-\ and _/= I to W j . 

Use equation (6.4.57) (for j = 3) to update the values at the fictitious points (y = /I3 +1) 

for / = 1 to /Wj - 1. 

9. I f convergence is achieved go to step 10 i f not return to step 4 to start another iteration 

of the SOR method. 

10. Store the discrete velocities v̂ ^ at every meshpoint in each sub-domain as an array. 
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Appendix 8.1 Iterative procedure used to solve the finite diH'erence equations for 

v,(r,z) presented in section 8.4.2 

The steps for solving the finite difference equations presented in section 8.4.2 are as 

follows. 

1. Set initial values for v,̂  at all internal meshpoints, boundary meshpoints and the 

Tictitious meshpoints' above the free surface boundaries. 

2. Calculate the discrete functions given in equations (6.4.14), (6.4.18) and (6.4.21) at all 

relevant meshpoints. 

3. Apply equation (8.4.1) in sub-domain 1 (^ = 1) for / = 1 to m, - 1 and j = \ to / i , . Use 

equation (8.4.2) (for s=\) to update the values at the Tictitious meshpoints' 

( j = «, 4-1) for / = 1 to m, - 1 . 

4. Apply equation (8.4.3) for y = 1 to - I at meshpoints on the interface between sub-

domains 1 and 2. Let v = v,, for j= \ to «, - 1 in order to match the finite 

difference equations across the interface between sub-domains 1 and 2. 

5. Apply equation (8.4.1) in sub-domain 2 ( 5 = 2) for I = 1 to m^- \ and j = \ to n^-l. 

6. Apply equation (8.4.4) for / = 1 to - 1 at meshpoints on the interface between sub-

domains 2 and 3. Let v., = v., for / = 1 to / / L - 1 in order to match the finite 

difference equations across the interface between sub-domains 2 and 3. 

7. Apply equation (8.4.1) in sub-domain 3 ( j = 3) f o r / = 1 to m^~\ and _/* = I to ;/3.Use 

equation (8.4.2) (for s=3) to update the values at the 'fictitious meshpoints' 

(J = +1) for / = 1 to m, - 1 . 

8. I f convergence is achieved go to step 9 i f not return to step 3 to start another iteration of 

the SOR method. 

9. Store the discrete velocities v,̂  at every meshpoinl in each sub-domain as an array. 
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Appendix 8.2 Iterative procedure used to solve the Tinite difference equations for 

^iC^'^) presented in section 8.4.3 

The steps for solving the finite difference equations presented in section 8.4.3 are as 

follows. 

1. Set initial values for v^^ at all internal meshpoints, boundary meshpoints and the 

'fictitious meshpoints' above the free surface boundaries. 

2. Calculate the discrete functions given in equations (6.4.14), (6.4.18) and (6.4.21) at all 

relevant meshpoints. 

3. Apply equation (8.4.5) in sub-domain I ( j = 1) for / = 1 to /n̂  - 1 and 7 = 1 to / i , . Use 

equation (8.4.6) (for s=\) to update the values at the 'fictitious meshpoints' 

(7 = + 1) for / = I to /w, - 1. 

4. Apply equation (8.4.7) for 7 = 1 to n^ - 1 at meshpoints on the interface between sub-

domains 1 and 2. Let = v for 7 = 1 to //, - 1 in order to match the finite 

difference equations across the interface between sub-domains 1 and 2. 

5. Apply equation (8.4.5) in sub-domain 2 ( 5 = 2 ) f o r / = 1 to m^-l and 7 = 1 to n^-l. 

6. Apply equation (8.4.8) for / = I to ni^-] at meshpoints on the interface between sub-

domains 2 and 3. Let v., = v,, for / = 1 to /w, - 1 in order to match the finite 
" ».o 22 • „^ 2 

difference equations across the interface between sub-domains 2 and 3. 

7. Apply equation (8.4.5) in sub-domain 3 ( j = 3) f o r / = 1 to m^-l and 7 = 1 to / i j .Use 

equation (8.4.6) (for s = 3) to update the values at the 'fictitious meshpoints' 

(7 = 7/3 +1) for / = 1 to /W3 - 1 . 

8. I f convergence is achieved go to step 9 i f not return to step 3 to start another iteration of 

the SOR method. 

9. Store the discrete velocities v̂ ^ at every meshpoint in each sub-domain as an array. 
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Appendix 8.3 Iterative procedure used to solve the finite difference equations for 

v(r,z) presented in section 8.6.1 

The steps for solving the finite difference equations presented in section 8.6.1 are as 

follows. 

1. Set initial values for at all internal meshpoints, boundary meshpoints and the 

^fictitious meshpoints' above the free surface boundaries. 

2. Evaluate the quantity (ar,)^ for the known fluid and geometry parameters at the 

prescribed frequency of oscillation. 

3. Calculate the discrete functions given in equations (6.4.14), (6.4.18) and (6.4.21) at all 

relevant meshpoints. 

4. Apply equation (8.6.1) in sub-domain 1 ( 5 = 1) for i = I to w, - 1 and j = \ to //,. Use 

equation (8.6.2) (for 5 = 1) to update the values at the 'fictitious meshpoints* 

(7 = ; i , + 1) for / = 1 to /;/, - 1 . 

5. Apply equation (8.6.3) for j = \ to /?, - 1 at meshpoints on the interface between sub-

domains 1 and 2. Let v, = v, for / = 1 to /?, - 1 in order to match the finite 

difference equations across the interface between sub-domains 1 and 2. 

6. Apply equation (8.6.1) in sub-domain 2 ( 5 = 2 ) for / = 1 to rn^-X and y = 1 to n^-l. 

7. Apply equation (8.6.4) for / = 1 to m^-l at meshpoints on the interface between sub-

domains 2 and 3. Let v, = v, for / = 1 to - 1 in order to match the finite 

difference equations across the interface between sub-domains 2 and 3. 

8. Apply equation (8.6.1) in sub-domain 3 ( 5 = 3) for / = 1 to m^-X and y = 1 to / I 3 . Use 

equation (8.6.2) (for s = 2) to update the values at the 'fictitious meshpoints' 

(y = / i j +1) for / = I to m^-\. 

9. I f convergence is achieved go to step 10 i f not return to step 4 to start another iteration 

of the SOR method. 

10. Store the discrete velocities ^ ^ at every meshpoint in each sub-domain as an array. 
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NOMENCLATURE 

(x,y,z) : cartesian coordinates 

(r,0,z) : cylindrical polar coordinates 

ir,0,<p) : spherical polar coordinates 

a : parallel plate radius, cone base radius 

: coefficients in cone and plate oscillatory shear theory 

c : phase lag 

C(j : applied torque (steady shear theory), applied torque amplitude 

(oscillatory shear theory for CSR rheometer) 

Cp . : torque exerted on upper platen due to fluid motion 

De : Deborah number 

total derivative 

partial derivative 

substantial derivative 

dt 

d_ 

dt 

_D 

Dt 

: bi-harmonic operator 

/ : frequency (cycles/sec) 

/ o » / i > / 2 > / 3 » / 4 • non-dimensional geometry dependent factors 

: tangential force (Polyflow boundary conditions) 

JQ : ^-direction force (Polyflow boundary conditions) 

g : gravitational acceleration 

G : rigidity modulus of a Maxwell element spring 

G ' : dynamic rigidity 

G q * : zero order dynamic rigidity (fluid inertia effects ignored) 

G ( / - /') : relaxation modulus 

h ; parallel plate gap, concentric cylinder immersed height 

/ : moment of inertia of oscillating upper platen member 

: second invariant of the rate of strain tensor 

: order Bessel function of the first kind 

k : power law fluid consistency index 
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K : torsion bar stiffness 

L : 6 component of the Laplacian operator of a vector field 

In : natural logarithm 

// : power law index 

N : non-dimensional fluid inertia parameter (oscillatory shear theory) 

p : pressure 

Pl^ : associated Legendre function of the first kind (degree /; and order m) 

Q" : associated Legendre function of the second kind (degree // and order m) 

^\y''oA^^2 '• concentric cylinder radii 

R : non-dimensional fluid inertia parameter (oscillatory shear theory) 

: Reynolds number 

S : geometrical parameter 

/ : time 

V : past time for linear viscoelastic fluids 

V : velocity vector 

(v^, , ) : velocity components in cylindrical polar coordinates 

i ^ r ^ ^ o y ^ p ) ' velocity components in spherical polar coordinates 

^ooy^r]y^'z\y^o2 ' velocity components for steady shear perturbation theory 

(zero, first and second order) 

»^'2 • velocity functions for CSR oscillatory shear perturbation theory 

(full inertia, zero, first and second order) 

»^V»^Mo»^7-o' • velocity functions for Weissenberg oscillatory shear perturbation theory 

^A / i» *V i»»^T2 (̂ ** inertia, zero, first and second order) 

v̂ , : normal, tangential velocity (Polyflow boundary conditions) 

: amplitude of oscillation of inner cylinder (CSR rheometer) 

: order Bessel function of the second kind 

2 , , : concentric cylinder geometry dimensions in r-direction 

a : fluid inertia parameter (oscillatory shear theory) 

: zero order fluid inertia parameter (oscillatory shear theory) 

fi^ : non-dimensional geometry dependent constant 

: fluid inertia parameter (cone and plate oscillatory shear theory) 
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(p : variable for streamfiinction equations 

y : strain tensor 

Y : shear rate tensor 

/ : magnitude of the shear rate tensor 

y Q ; shear rate amplitude 

77 : shear viscosity 

T]Q : Newtonian viscosity 

77^ : constant viscosity (generalised Maxwell model) 

77' : dynamic viscosity 

7]^ : zero order dynamic viscosity (fluid inertia effects ignored) 

77' : complex viscosity 

VQ^VX^VI • complex viscosity from oscillatory shear perturbation theory 

(zero, first and second order) 

i9 : amplitude ratio (upper platen amplitude / lower platen amplitude) 

A J : relaxation time (generalised Maxwell model) 

0^ : semi-vertical cone angle 

6^ : small cone angle 

0^ : upper platen amplitude of oscillation (parallel plate and concentric 

cylinder geometry) 

$^ : lower platen amplitude of oscillation (parallel plate and concentric 

cylinder geometry) 

p : fluid density 

r : stress tensor 

: stress tensor (generalised Maxwell model) 

1=1 

summauon sign 

Q) : angular frequency of oscillation (radians/sec) 

Q : angular velocity 

y/ : streamflinction 

V/, : upper platen amplitude of oscillation (cone and plate geometry) 

^ 2 : lower platen amplitude of oscillation (cone and plate geometry) 
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V : gradient operator 

V ' : divergence operator 

: Laplacian operator 

* : non-dimensional variable 
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Figure 4.1 

The parallel plate geometry for the Weissenberg rheogoniometer. 
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Figure 4.2 

The concentric cylinder geometry for the Weissenberg rheogoniometer. 
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Figure 4.3 

Cone and plate geometry for the Weissenberg rheogoniometer 
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Figures 5.1 and 5.2 

Oscillatory shear flow simulations for a Weissenberg rheogoniometer with a torsion bar 

system. 

Normalised dynamic viscosity and dynamic rigidity vs. normalised frequency for a 

Newtonian fluid in the parallel plate geometry (a = 0-0375m,/i = 500/im) when /? = 2 
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Figures 5.3 and 5.4 

Oscillatory shear f low simulations for a Weissenberg rheogoniometer w i th a torsion bar 

system. 

Normalised dynamic viscosity and dynamic rigidity data corrected fo r second order f luid 

inertia effects vs. normalised frequency for Newtonian fluids over a range o f /? values in 

the parallel plate geometry (a = 0 0375m,/ i = 500 / im) . 
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Figure 5.5 and 5.6 

Oscillatory shear f low simulations for a Weissenberg rheogoniometer w i th a torsion bar 

system. 

Normalised dynamic viscosity and dynamic rigidity vs. normalised frequency for a single 

element Maxwel l fluid in the parallel plate geometry (a = 0 0375m,/7 = 5 0 0 / i m ) when 
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Figures 5.7 and 5.8 

Oscillatory shear flow simulations for a Weissenberg rheogoniometer wi th a torsion bar 

system. 

Normalised dynamic viscosity and dynamic rigidity data corrected for second order fluid 

inertia effects vs. normalised frequency for single element Maxwel l fluids over a range o f 

R values in the parallel plate geometry (a = 0-0375m,/? = 500 / /m) . 
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Figures 5.9 and 5.10 

Oscillatory shear f low simulations for a Weissenberg rheogoniometer w i th a strain gauge 

torsion head system (W) and a CSR controlled stress rheometer (C). 

Normalised dynamic viscosity and dynamic rigidity vs. normalised frequency for a 

Newtonian f luid in the parallel plate geometry (a = 0-0375 m, / i = 5 0 0 / i m ) . 
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Figures 5.11 and 5.12 

Oscillatory shear f low simulations for a Weissenberg rheogoniometer w i th a strain gauge 

torsion head system (W) and a CSR controlled stress rheometer (C). 

Normalised dynamic viscosity and dynamic rigidity vs. normalised frequency fo r a single 

element Maxwel l fluid in the parallel plate geometry (a = 0-0375 m , / i = 500 / /m) when 

R = OS. 
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Figures 5.13 and 5.14 

Oscillatory shear flow simulations for a Weissenberg rheogoniometer w i th a strain gauge 

torsion head system (W) and a CSR controlled stress rheometer (C). 

Normalised dynamic viscosity and dynamic rigidity data corrected fo r second order fluid 

inertia effects vs. normalised frequency for single element Maxwel l fluids over a range o f 

R values in the parallel plate geometry (a = 0 0375m,/ i = 500/um). 
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Figures 5.15 and 5.16 

Oscillatory shear flow simulations for a Weissenberg rheogoniometer with a torsion bar 

system 

Normalised dynamic viscosity and dynamic rigidity vs. normalised frequency for a 

Newtonian fluid in the concentric cylinder geometry (r- = 15mm,r^ = 20-75 mm) when 

7^=10. 
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Figures 5.17 and 5.18 

Oscillatory shear flow simulations for a Weissenberg rheogoniometer with a torsion bar 

system 

Normalised dynamic viscosity and dynamic rigidity data corrected for second order fluid 

inertia effects vs. normalised frequency for Newtonian fluids over a range of R values in 

the concentric cylinder geometry {r. = \5mm, = 20• 75mm) . 
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Figures 5.19 and 5.20 

Oscillatory shear flow simulations for a Weissenberg rheogoniometer with a torsion bar 

system 

Normalised dynamic viscosity and dynamic rigidity vs. normalised frequency for a single 

element Maxwell fluid in the concentric cylinder geometry (/; =15mm,/ ; =20-75 mm) 

when R = 5. 
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Figures 5.21 and 5.22 

Oscillatory shear flow simulations for a Weissenberg rheogoniometer with a torsion bar 

system 

Normalised dynamic viscosity and dynamic rigidity data corrected for second order fluid 

inertia effects vs. normalised frequency for single element Maxwell fluids over a range of 

R values in the concentric cylinder geometry (r; = 15 mm, =20-75 mm) , 
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Figures 5.23 and 5.24 

Oscillatory shear flow simulations for a Weissenberg rheogoniometer with a strain gauge 

torsion head system (W) and a CSR controlled stress rheometer (C). 

Normalised dynamic viscosity and dynamic rigidity vs. normalised frequency for a 

Newtonian fluid in the concentric cylinder geometry (r. = 15 mm, = 20 - 75 mm) . 
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Figures 5.25 and 5.26 

Oscillatory shear flow simulations for a Weissenberg rheogoniometer with a strain gauge 

torsion head system (W) and a CSR controlled stress rheometer (C). 

Normalised dynamic viscosity and dynamic rigidity vs. normalised frequency for a single 

element Maxwell fluid in the concentric cylinder geometry (r = 15mm,r^ =20-75mm) 

when ^ = 5. 
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Figures 5.27 and 5.28 

Oscillatory shear flow simulations for a Weissenberg rheogoniometer with a strain gauge 

torsion head system (W) and a CSR controlled alress rheometer (C). 

Normalised dynamic viscosity and dynamic rigidity data corrected for second order fluid 

inertia effects vs. normalised frequency for single element Maxwell fluids over a range of 

R values in the concentric cylinder geometry (r = 15 mm, /; = 20-75 mm) . 
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Figures 5,29 and 5.30 

Oscillatory shear flow simulations for a Weissenberg rheogoniometer with a torsion bar 

system 

Normalised dynamic viscosity and dynamic rigidity vs. normalised frequency for a 

Newtonian fluid in the cone and plate geometry {a = 0- 0375m, 6^ = 2°) when 

7? = 1000. 
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Figures 5.31 and 5.32 

Oscillatory shear flow simulations for a Weissenberg rheogoniometer with a torsion bar 

system. 

Normalised dynamic viscosity and dynamic rigidity vs. normalised frequency for a single 

element Maxwell fluid in the cone and plate geometry (a = 0-0375m, 6^ = 2") when 

7?= 1000. 
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Figures 5.33 and 5.34 

Oscillatory shear flow simulations for a Weissenberg rheogoniometer with a strain gauge 

torsion head system (W) and a CSR controlled stress rheometer (C). 

Normalised dynamic viscosity and dynamic rigidity vs. normalised frequency for a 

Newtonian fluid in the cone and plate geometry (a = 0-0375 m. 6Q = 2*) . 
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Figures 5.35 and 5.36 

Oscillatory shear flow simulations for a Weissenberg rheogoniometer with a strain gauge 

torsion head system (W) and a CSR controlled stress rheomeier (C). 

Normalised dynamic viscosity and dynamic rigidity vs. normalised frequency for a single 

element Maxwell fluid in the cone and plate geometry (a = 0 0375m, = 2') when 

R=\OQO. 
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Figure 6.1 

The recessed concentric cylinder geometry for the CSR controlled stress rheometer. 
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Figure 6.2 

Schematic diagram of a recessed concentric cylinder geometry. 
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Figures 6.6(a) and 6.6(b) 

Primary flow velocity contours and secondary flow streamlines for a Newtonian fluid in a 

wide gap geometry ai = \ (1008% of the critical Reynolds number). 
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Figures 6.7(a) and 6.7(b) 

Primary flow velocity contours and secondary flow streamlines for a Newtonian fluid in a 

wide gap geometry at =93 -75 (94-47% of the critical Reynolds number). 
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Figure 6.8 

Normalised shear stress distribution on inner cylinder wall for a Newtonian fluid in the 

CSR geometries at zero Reynolds number. 
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Figure 6.9 

Normalised shear stress distribution on inner cylinder wall for various power law fluids in 

the wide gap geometry at zero Reynolds number. 
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Figure 6.10 

Percentage error in torque vs. (1 - //) for the CSR geometries at zero Reynolds number. 
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Figure 6.11 

Percentage error in torque for a Newtonian fluid vs. % critical Reynolds number, for the 

second order perturbation theory and Polyflow with full fluid inertia efTects. 
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Figure 6.12 

Percentage error in Newtonian shear viscosity prediction vs. % critical Reynolds number 

for the 1:2 ratio gap geometry. 
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Figures 7.2(a) and 7.2(b) 

Primary flow velocity contours and secondary flow streamlines for a Newtonian fluid in a 

wide gap geometry on the Weissenberg rheogoniometer when R^ = \. 
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Figures 7,3(a) and 7.3(b) 

Primary flow velocity contours and secondary flow streamlines for a Newtonian fluid in a 

wide gap geometry on the Weissenberg rheogoniometer when = 3445. 
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Figure 7.4 

Percentage error in torque vs. Reynolds number for Newtonian fluids in the CSR 

geometries on the Weissenberg rheogoniometer. 
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Figure 7.5 

Percentage error in torque vs. Reynolds number for various power law fluids in the wide 

gap geometry on a Weissenberg rheogoniometer. 
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Figure 7.6 

Percentage error in torque vs. Reynolds number for various power law fluids in the 

medium gap geometry on a Weissenberg rheogoniomeler. 
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Figure 7.7 

Percentage error in torque vs. Reynolds number for various power law fluids in the 

narrow gap geometry on a Weissenberg rheogoniometer. 
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Figure 7.8 

Percentage error in Newtonian shear viscosity prediction vs. Reynolds number for the 

wide gap geometry on a Weissenberg rheogoniometer. 
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Figure 7.9 

Percentage error in Newtonian shear viscosity prediction vs. Reynolds number for the 

medium gap geometry on a Weissenberg rheogoniometer. 
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Figure 7.10 

Percentage error in Newtonian shear viscosity prediction vs. Reynolds number for the 

narrow gap geometry on a Weissenberg rheogoniomeier. 
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Figures 8.1 and 8.2 

Oscillatory shear flow simulations for a CSR controlled stress rheometer. 

Normalised dynamic viscosity and dynamic rigidity vs. normalised frequency for a 

Newtonian fluid in the wide gap geometry. 

Exact , Uncorrected (/o=I,/ i=0,/2=0), 
• X- Corrected for end effects (/o=0-908,/,=0,/2=0), 

—0— Corrected for first order fluid inertia effects (/o=I,/ i=6-8l Ix lO•^/2=0), 

—•— Corrected for end effects and first order fluid inertia effects 
(/o=0-908,/,=5-932x 10•^/2=0), 

—O— Corrected for second order fluid inertia effects 
( /o=^/ I=6-8 i lx lO•^/2=I•9I9x lO- ' ) , 

• Corrected for end effects and second order fluid inertia effects 

(/o=0-908,/,=5-932xIO'\/2=I-612xlO-'). 
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Figures 8.3 and 8.4 

Oscillatory shear flow simulations for a CSR controlled stress rheometer. 

Normalised dynamic viscosity and dynamic rigidity vs. normalised frequency for a 

Newtonian fluid in the medium gap geometry. 

Exact , Uncorrected (/o=l,/i=0,/2=OX 
X Corrected for end effects (/o=0-927,/,=0,/2=0), 

—O— Corrected for first order fluid inertia effects ( /o=l , / i=3 016x 10 ^ /2=0) , 
—•— Corrected for end effects and first order fluid inertia effects 

(/o=0.927,/,=2•725xlO•^/2=0), 
— • — Corrected for second order fluid inertia effects 

(/o=l,/i=3.016xlO^/2=2-918xlO^), 
— C o r r e c t e d for end effects and second order fluid inertia effects 

(/o-0.927,/,=2.725xlO-',/2=2-576xlO") 
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Figures 8.5 and 8.6 

Oscillatory shear flow simulations for a CSR controlled stress rheometer. 

Normalised dynamic viscosity and dynamic rigidity vs. normalised frequency for a 

Newtonian fluid in the narrow gap geometry. 

Exact , Uncorrected (/o=l,/,=0./2=0), . 
X Corrected for end effects (/o=0-973,/i=0,/2=0), 

— O - Corrected for first order fluid inertia effects (/o=l ,/i=4-152x 10*\/2=0), 
• Corrected for end effects and first order fluid inertia effects 

(/o=0-973,/,=4-021X I0-\ /2=0), 

—O— Corrected for second order fluid inertia effects 

(/o=l,/l=4•I52xIO•^/2=4•088xlO^), 

—•— Corrected for end effects and second order fluid inertia effects 
(/o=0.908,/,=4.021X10'\/2=3-937x 10^). 
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Figures 8.7 and 8.8 

Oscillatory shear flow simulations for a CSR controlled stress rheomeler 

Normalised dynamic viscosity and dynamic rigidity vs. Deborah number for a single 

element Maxwell model fluid in the wide gap geometry. 

Exact , Uncorrected ( / o = I , / i = 0 , / 2 = 0 ) , 

X Corrected for end effects ( / o=0 -908 , / i =0 , / 2=0 ) , 

— C J — Corrected for second order fluid inertia effects 
( / o = l . / i = 6 - 8 I I x I o V 2 = I - 9 I 9 x l O - ' ) , 

— • — Corrected for end effects and second order fluid inertia effects 
( / ^ = 0 - 9 0 8 , / , = 5 . 9 3 2 x l 0 ^ / 2 = l - 6 1 2 x l 0 - ) 
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Figures 8.9 and 8.10 

Oscillatory shear flow simulations for a CSR controlled stress rheometer. 

Normalised dynamic viscosity and dynamic rigidity data corrected for end effects and 

second order fluid inertia effects ( /o=0-908, / ,=5•932x lO•^ /2= l •612x lO• ' ) vs. Deborah 

number for a range of R values in the wide gap geometry. 
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Figures 8.11 and 8.12 

Oscillatory shear flow simulations for a CSR controlled stress rheometer. 

Normalised dynamic viscosity and dynamic rigidity data corrected for end effects and 

second order fluid inertia effects ( / o = 0 - 9 2 7 , / , = 2 - 7 2 5 x l O \ / 2 = 2 . 5 7 6 x l O ' ^ ) vs. Deborah 

number for a range of R values in the medium gap geometry. 

316 



o 

> 
6 

Q 

o 

— Exact 

R = 1 2 

R = 20 

- X - R = 30 

0.2 0.4 0.6 0.8 1 1-2 1.4 

Deborah Number, X co 

1.6 1.8 



0.60 

3 
o 

•-5 

5 

c 
Q 
-o 
(U 

13 

o 

— Exact 

R = 8 

R = 2 

R = 20 

x -R = 30 

0.00 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 

Deborah Number, X co 

1.6 1.8 



Figures 8.13 and 8.14 

Oscillatory shear flow simulations for a CSR controlled stress rheometer. 

Normalised dynamic viscosity and dynamic rigidity data corrected for end effects and 

second order fluid inertia effects ( / o = 0 - 9 7 3 , / l = 4 • 0 2 1 x l 0 • ^ / 2 = 3 - 9 3 7 x l O " ^ ) vs. Deborah 

number for a range o f ^ values in the narrow gap geometry. 
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Figures 9.1 and 9,2 

Oscillatory shear flow simulations for a Weissenberg rheogoniomeler with a torsion bar 

system. 

Normalised dynamic viscosity and dynamic rigidity vs. normalised frequency for a 

Newtonian fluid in the medium gap geometry when = 1 0 . 

Exact , Uncorrected ( / o = l . / i = 0 , / 2 = 0 ) , 

• X Corrected for end effects ( / o = 0 - 9 2 7 , / , = 0 , / 2 = 0 ) , 

—D— Corrected for second order fluid inertia effects 
( / o= l , / , =2 •437x lO"^ /2=5 •452x lO•^ /3=4 -150x lO•^ , / 4=7 •068x lO" * ) , 

— • — Corrected for end effects and second order fluid inertia effects 
( / 0=0 •908 , / , =2 *248x l0 " ^ /2=5 •364x l0 • ^ /3=3 •739x l0 • ^ , / 4=6 .812x l0 ' ^ ) . 
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Figures 9.3 and 9.4 

Oscillatory shear flow simulations for a Weissenberg rheogoniometer with a torsion bar 

system. 

Normalised dynamic viscosity and dynamic rigidity vs. normalised frequency for a single 

element Maxwell fluid in the medium gap geometry when R = \0. 

Exact , Uncorrected ( / o = l , / i = 0 , / 2 = 0 ) . 
Corrected for end effects ( / o = 0 - 9 2 7 . / i = 0 , / 2 = 0 ) , 

Corrected for second order fluid inertia effects 
( / O = U / I = 2 - 4 3 7 X I O ' . / 2 = 5 - 4 5 2 X I O - ' , / 3 = 4 1 5 0 K 1 0 ' ^ , / 4 = 7 - 0 6 8 X 1 0 - ^ ) , 

Corrected for end effects and second order fluid inertia effects 
( / o = 0 • 9 0 8 , / , = 2 • 2 4 8 x l O • ^ / 2 = 5 - 3 6 4 x l O • ^ / 3 = 3 - 7 3 9 x l O • ^ , / 4 = 6 - 8 1 2 x l O • ^ ) . 

•X-
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Figures 9.5 and 9.6 

Oscillatory shear flow simulations for a Weissenberg rheogoniometer with a strain gauge 

torsion head system and a CSR controlled stress rheometer. 

Normalised dynamic viscosity and dynamic rigidity vs. normalised frequency for a 

Newtonian fluid in the medium gap geometry. 

Exact , o CSR uncorrected (/o=l , / i=0,/2=0), 
• Weissenberg uncorrected (yo=l,/ i=0,/2=0), 

—o— CSR corrected for end effects (/o=0-927,/,=0,/2=0), 
• Weissenberg corrected for end effects (/o=0-927,/i=0,/2=0), 

—CD— CSR corrected for end effects and second order fluid inertia effects 
(/o=0.927,/,=2.725xlO-',/2=2.576xlO-'), 

M Weissenberg corrected for end effects and second order fluid inertia effects 
(/o=0•927,/,=2.248xlO•^/3-3•739xlO•^). 
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Figures 9.7 and 9.8 

Oscillatory shear flow simulations for a Weissenberg rheogoniometer with a strain gauge 

torsion head system and a CSR controlled stress rheometer. 

Normalised dynamic viscosity and dynamic rigidity vs. normalised frequency for a single 

element Maxwell fluid in the medium gap geometry when R = \0. 

Exact , o CSR uncorrected ( /o= l , / i=0 , /2=0) , 
• Weissenberg uncorrected ( / )= l , / i=0 ,^=0) , 

—o— CSR corrected for end effects (/o=0-927./ i=0,/2=0), 
— W e i s s e n b e r g corrected for end effects (/o=0-927,/,=0,/2=0), 
—Q— CSR corrected for end effects and second order fluid inertia effects 

(/o=0-927,/,=2-725x 10'\/2=2-576x 10^), 
—•— Weissenberg corrected for end effects and second order fluid inertia effects 

(/o=0-927,/,=2-248xl0-\/3=3-739xl0-^). 
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