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FLUID INERTIA AND END EFFECTS IN RHEOMETER FLOWS

Jason Peter Hughes

Abstract

This thesis is concerned with the characterisation of the flow behaviour of inelastic
and viscoelastic fluids in steady shear and oscillatory shear flows on commercially available
rheometers.

The first part of this thesis is concerned with a linear viscoelastic theory to describe
the oscillatory shear flow behaviour of fluids on a Weissenberg rheogoniometer. A fluid
inertia perturbation analysis is used to produce analytical formulae for correcting complex
viscosity data for first and second order fluid inertia effects. In order to validate the
perturbation theory we perform a simulation of the oscillatory shear flow behaviour of
Newtonian and single element Maxwell fluids on a Weissenberg rheogoniometer.

A theoretical prediction of end effects and fluid “inertia effects on steady shear
viscosity measurements of Newtonian fluids in a recessed concentric cylinder geometry is
developed for a CSR controlled stress rheometer and a Weissenberg rheogoniometer, The
relevant equations are solved using a perturbation analysis which is valid for low Reynolds
number flows. From this theory correction formulae are produced to compensate for end
effects and second order fluid inertia effects in steady shear flows on these instruments. End
effects and fluid inertia effects are also investigated for power law shear thinning fluids.

The final part of the thesis is concerned with a theoretical prediction of the end
effect of a recessed concentric cylinder geometry on complex viscosity measurements of a
generalised linear viscoelastic fluid. The linear viscoelastic theory is carried out for
oscillatory shear flows on a CSR controlled stress rheometer and a Weissenberg
rheogoniometer. A fluid inertia perturbation analysis is used to produce analytical formulae
to correct complex viscosity data for end effects and second order fluid inertia effects.
Numerically simulated oscillatory shear data is used to establish the limitations of the second

order fluid inertia correction formulae which include end effects.
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CHAPTER 1

INTRODUCTION

Rheology is defined as ‘the study of the deformation and flow of matter’. The term
was invented by E.C. Bingham and was first accepted when the first Society of Rheology
(American) was formed in 1929. This organisation brought together workers from the fields
of chemistry, engineering, mathematics and physics. The scope of rheology is now
extremely wide and is of importance to many industries, such as food, pharmaceutical,
plastic;s, petroleum and rubber.

In classical mechanics the deformation of solids was governed by Hooke’s law for
elastic deformations and the flow of fluids was governed by Newton’s Law describing
viscous flow. However the flow behaviour of the majority- of materials lies between these
two extremes and the matenal exhibits both solid-like and fluid-like properties. Such
materials are described as viscoelastic. In this thesis we shall consider steady shear and
oscillatory shear theories that can be used to characterise the flow properties of inelastic and
viscoelastic materials respectively.

Rheometry is an important area of rheological study which is concerned with the
measurement of material properties in simple shear flow situations. These measurements can
be used to characterise the flow behaviour of non-Newtonian fluids using suitably defined
material functions. The rheological data obtained from the simple flow situations can also be
used in the development of constitutive equations. These constitutive equations can then be
used in conjunction with the stress equations of motion and the continuity equation to
predict the behaviour of materials in more complex flow situations. The simple shear flow
situations can be generated on an instrument known as a rheometer. In this thesis two

different types of rheometer are considered, one being the CSR controlled stress rheometer




where the material under test is subjected to a stress and the subsequent deformation is
measured. The other type of rheometer is the controlled strain Weissenberg rheogoniometer
where a deformation is applied to the matenial and the subsequent forces are measured.

This thesis is concerned with a theoretical investigation of some of the simple flow
situations that can be pgenerated on the CSR controlled stress rheometer and the
Weissenberg rheogoniometer. The main purpose of the work is to modify current rheometer
formulae to give improved material data. This involves extending the existing theories to
include fluid inertia effects and/or end effects.

In chapter 2 we present the equations of motion and equations of state required to
describe the rheometer flows considered in this thesis. The equations of conservation of
mass and conservation of momentum are presented and a brief description of their
derivation is given. For the theoretical fluid models considered in this thesis we describe the
formulation of the equations of state. In this chapter we also define the complex viscosity
function which is used to characterise the oscillatory shear flow behaviour of viscoelastic
fluids.

In chapter 3 we introduce the numerical methods that are used to solve the
equations of motion for concentric cylinder flows. A description of the finite difference
approximation of partial differential equations is given and iterative methods for solving the
resulting linear system of algebraic equations are discussed. The method of transforming an
trregular finite difference mesh in the physical domain to meshpoints with uniform spacing in
a computational plane is described. In the analysis of steady shear concentric cylinder flow
the authors numerical results will be compared with those obtained using the Polyflow
package. We give a brief description of this package and discuss the relevant Polyflow
boundary conditions for steady shear concentric cylinder flow.

Chapter 4 is concerned with the linear viscoelastic theory for oscillatory shear flow





































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































